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Function Reference

Functions — Categorical List (p. 1-2) Lists the Control System Toolbox functions according to 
their purpose.

Functions — Alphabetical List (p. 1-9) Lists the Control System Toolbox functions 
alphabetically.
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Functions — Categorical List 1

General

Creating Linear Models

Data Extraction

Conversions

ctrlpref Set Control System Toolbox preferences

ltimodels Detailed help on the various types of LTI 
models

ltiprops Detailed help on available LTI model properties

filt Specify a digital filter

frd Create a frequency-response data models

lti/set Set/modify properties of LTI models

ss, dss Create state-space models (continuous/discrete)

tf Create transfer function models

zpk Create zero/pole/gain models

dssdata Descriptor version of ssdata

frdata Extract frequency-response data

lti/get Access values of LTI model properties

ssdata Extract state-space matrices

tfdata Extract numerators and denominators

zpkdata Extract zero/pole/gain data

c2d Convert from continuous- to discrete-time models

chunits Convert the units property for FRD models
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System Interconnections  

System Gain and Dynamics 

d2c Convert from discrete- to continuous-time models

d2d Test true for continuous-time models

frd Convert to a frequency-response data model

ss Convert to a state-space model

tf Convert to a transfer function model

zpk Convert to a zero/pole/gain model

append Group LTI systems by appending inputs and outputs

connect Derive state-space models from block diagram 
descriptions

feedback Feedback connections of two systems

lft Generalized feedback interconnection (Redheffer star 
product)

parallel Generalized parallel connection (see also overloaded 
+)

series Generalized series connection (see also overloaded *)

bandwidth System bandwidth

dcgain D.C. (low-frequency) gain

bandwidth System bandwidth

damp Natural frequency and damping of system poles

dsort Norms of LTI systems

esort Sort continuous poles by real part

iopzmap Input/output pole/zero map

lti/norm Norms of LTI systems
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Time Domain Analysis

Frequency Domain Analysis

modsep Region-based modal decomposition

pole, eig System poles

pzmap Pole/zero map

stabsep Stable/unstable decomposition

covar Covariance of response to white noise

gensig Generate input signal for lsim

impulse Impulse response

initial Response of state-space system with given initial 
state

lsim Response to arbitrary inputs

ltiview Response analysis GUI (LTI Viewer)

step Step response

allmargin All crossover frequencies and related gain/phase 
margins

bode Bode diagrams of the frequency response

bodemag Bode magnitude diagram only

evalfr Evaluate frequency response at given frequency

freqresp Frequency response over a frequency grid

frd/interp Interpolate frequency-esponse data

ltiview Response analysis GUI (LTI Viewer)

margin Gain and phase margins

nichols Nichols plot
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Classical Design

Pole Placement

LQR/LQG Design 

nyquist Nyquist plot

sigma Plot the pole/zero map of an LTI model

rlocus Evans root locus

sisotool SISO design GUI (root locus and loop-shaping 
techniques)

acker SISO pole placement

estim Form estimator given estimator gain

place MIMO pole placement

reg Form regulator given state-feedback and estimator 
gain

augstate Augment output by appending states

lqg Single-step LQG design

lgr, dlqr Linear-quadratic (LQ) state-feedback regulator

lqrd Discrete LQ regulator for continuous plants

lqrreg Form LQG regulator given LQ gain and Kalman 
estimator

lqgy LQ regulator with output weighting

kalman Kalman estimator

kalmand Discrete Kalman estimator for continuous plants
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State-Space Models 

Time Delays    

Model Dimensions and Characteristics 

balreal Grammian-based input/output balancing

canon State-space canonical forms

ctrb Controllability matrix

gram Controllability and observability grammians

minreal Minimal realization and pole/zero cancellation

modred Model state reduction

margin Calculate gain and phase margins

ngrid Superimpose grid lines on a Nichols plot

nichols Calculate Nichols plot

nyquist Calculate Nyquist plot

obsv Observability matrix

sminreal Structurally minimal realization

ss2ss State coordinate transformation

ssbal Diagonal balancing of state-space realizations

delay2z Replace delays by poles at z=0 or FRD phase shift

hasdelay True for models with time delays

pade Pade approximation of time delays

totaldelay Total delay between each input/output pair

class Model type ('tf', 'zpk', 'ss', or 'frd')

isct True for continuous-time models

isdt True for discrete-time models
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Overloaded and Arithmetic Operators

Matrix Equation Solvers

isproper True for proper models

issiso True for single-input/single-output models

lti/ndims Number of dimensions

lti/isempty True for empty LTI models

reshape Reshape array of linear models

size Model sizes and order

+ and - Add and subtract systems (parallel connection)

* Multiply systems (series connection)

\ Left divide — sys1\sys2 means inv(sys1)*sys2

/ Right divide — sys1/sys2 means sys1*inv(sys2)

^ Powers of a given system

' Pertransposition

.' Transposition of input/output map

[..] Concatenate models along inputs or outputs

stack Stack models/arrays along some array dimension

lti/inv Inverse of an LTI system

conj Complex conjugation of model coefficients

bdschur Block diagonalization of a square matrix

care, dare Solve algebraic Riccati equations

gcare, gdare Solve generalized algebraic Riccati equations

lyap, dlyap Solve Lyapunov equations

lyapchol, 
dlyapschol

Square-root Lyapunov equations
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Command-Line Plot Customization
bodeplot Bode magnitude and phase plus plot handle

getoptions Get the plot options handle

hsvplot Hankel singular value plus plot handle

impulseplot Impulse response plus plot handle

initialplot Initial condition plus plot handle

iopzplot Pole/zero maps for input/output pairs plus plot 
handle

lsimplot Time response to arbitrary inputs plus plot 
handle

nicholsplot Nichols plot plus plot handle

nyquistplot Nyquist plus plot handle

pzplot Pole/zero plus plot handle

rlocusplot Root locus plus plot handle

setoptions Set plot options 

sigmaplot Singular values of the frequency response plus 
plot handle

stepplot Step response plus plot handle
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1ackerPurpose Pole placement design for single-input systems

Syntax k = acker(A,b,p)

Description Given the single-input system

and a vector p of desired closed-loop pole locations, acker (A,b,p)uses 
Ackermann’s formula [1] to calculate a gain vector k such that the state 
feedback  places the closed-loop poles at the locations p. In other 
words, the eigenvalues of  match the entries of p (up to ordering). Here 
A is the state transmitter matrix and b is the input to state transmission vector.

You can also use acker for estimator gain selection by transposing the matrix 
A and substituting c' for b when y = cx is a single output.

l = acker(a',c',p).'

Limitations acker is limited to single-input systems and the pair  must be 
controllable.

Note that this method is not numerically reliable and starts to break down 
rapidly for problems of order greater than 5 or for weakly controllable systems. 
See place for a more general and reliable alternative.

References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.

See Also lqr Optimal LQ regulator
place Pole placement design
rlocus Root locus design

x· Ax bu+=

u kx–=
A bk–

A b,( )
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1allmarginPurpose Compute all crossover frequencies and corresponding stability margins

Syntax S = allmargin(sys)

Description allmargin computes the gain, phase, and delay margins and the corresponding 
crossover frequencies of the SISO open-loop model sys. allmargin is applicable 
to any SISO model, including models with delays.

The output S is a structure with the following fields:

• GMFrequency — All -180 degree crossover frequencies (in rad/sec)

• GainMargin — Corresponding gain margins, defined as 1/G where G is the 
gain at crossover

• PMFrequency — All 0 dB crossover frequencies in rad/sec 

• PhaseMargin — Corresponding phase margins in degrees 

• DMFrequency and DelayMargin — Critical frequencies and the 
corresponding delay margins. Delay margins are given in seconds for 
continuous-time systems and multiples of the sample time for discrete-time 
systems. 

• Stable — 1 if the nominal closed-loop system is stable, 0 otherwise.

In general, stability cannot be assessed for FRD system. In any case when 
stability cannot be assessed, S is set to NaN.

See Also ltimodels Help on LTI models
ltiview LTI system viewer
margin Gain and phase margins for SISO open-loop systems
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1appendPurpose Group LTI models by appending their inputs and outputs

Syntax sys = append(sys1,sys2,...,sysN)

Description append appends the inputs and outputs of the LTI models sys1,...,sysN to form 
the augmented model sys depicted below.

For systems with transfer functions ,..., , the resulting system sys 
has the block-diagonal transfer function

For state-space models sys1 and sys2 with data  
and , append(sys1,sys2) produces the following state-space 
model.

:
:

sys1

sys2

sysN

 
u1

u2

uN

y1

y2

yN

sys

H1 s( ) HN s( )

H1 s( ) 0 .. 0

0 H2 s( ) . :

: . . 0
0 .. 0 HN s( )

A1 B1 C1 D1, , ,( )
A2 B2 C2 D2, , ,( )
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Arguments The input arguments sys1,..., sysN can be LTI models of any type. Regular 
matrices are also accepted as a representation of static gains, but there should 
be at least one LTI object in the input list. The LTI models should be either all 
continuous, or all discrete with the same sample time. When appending models 
of different types, the resulting type is determined by the precedence rules (see 
Precedence Rules for details).

There is no limitation on the number of inputs.

Example The commands

sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)

produce the state-space model

sys

a = 
                        x1           x2
           x1            0            0
           x2            0      1.00000

b = 
                        u1           u2           u3
           x1      1.00000            0            0
           x2            0            0      2.00000

 

c = 
                        x1           x2
           y1      1.00000            0

x·1

x·2

A1 0

0 A2

x1

x2

B1 0

0 B2

u1

u2

+=

y1

y2

C1 0

0 C2

x1

x2

D1 0

0 D2

u1

u2

+=
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           y2            0            0
           y3            0      3.00000
 
d = 
                        u1           u2           u3
           y1            0            0            0
           y2            0     10.00000            0
           y3            0            0      4.00000
 
Continuous-time system.

See Also connect Modeling of block diagram interconnections
feedback Feedback connection
parallel Parallel connection
series Series connection
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1augstatePurpose Append the state vector to the output vector

Syntax asys = augstate(sys)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), augstate appends the states  to the 
outputs  to form the model

This command prepares the plant so that you can use the feedback command 
to close the loop on a full-state feedback  .

Limitation Because augstate is only meaningful for state-space models, it cannot be used 
with TF, ZPK or FRD models.

See Also feedback Feedback connection
parallel Parallel connection
series Series connection

x· Ax Bu+=

y Cx Du+=

x
y

x· Ax Bu+=

y
x

C
I
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0

u+=
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1balrealPurpose Gramian-based input/output balancing of state-space realizations

Syntax [sysb,g] = balreal(sys)
[sysb,g] = balreal(sys,...

'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

[sysb,g] = balreal(sys,condmax)
[sysb,g,T,Ti] = balreal(sys)

Description [sysb,g] = balreal(sys) computes a balanced realization sysb for the stable 
portion of the LTI model sys. balreal handles both continuous and discrete 
systems. If sys is not a state-space model, it is first and automatically 
converted to state space using ss.

For stable systems, sysb is an equivalent realization for which the 
controllability and observability Gramians are equal and diagonal, their 
diagonal entries forming the vector G of Hankel singular values.  Small entries 
in G indicate states that can be removed to simplify the model (use modred to 
reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back 
to its unstable part to form sysb. The entries of g corresponding to unstable 
modes are set to Inf. You can specify additional options for the stable/unstable 
decomposition:

[sysb,g] = balreal(sys,...
'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

See stabsep for more details on these options.  The default values are ATOL=0, 
RTOL=1e-8, and ALPHA=1e-8.

Use balreal(sys,condmax) to control the condition number of the stable/
unstable decomposition. Increasing condmax helps separate close by stable and 
unstable modes at the expense of accuracy. By default condmax=1e8.

[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the 
diagonal of the balanced gramian, the state similarity transformation  

used to convert sys to sysb, and the inverse transformation .

xb Tx=

Ti T 1–
=
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If the system is normalized properly, the diagonal g of the joint gramian can be 
used to reduce the model order. Because g reflects the combined controllability 
and observability of individual states of the balanced model, you can delete 
those states with a small g(i) while retaining the most important input-output 
characteristics of the original system. Use modred to perform the state 
elimination.

There are also overloaded methods available. Type 

help ss/balreal
help lti/balreal
help idmodel/balreal

for more information.

Example1 Consider the zero-pole-gain model

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)
 
Zero/pole/gain:
   (s+10) (s+20.01)
----------------------
(s+5) (s+9.9) (s+20.1)

A state-space realization with balanced gramians is obtained by

[sysb,g] = balreal(sys)

The diagonal entries of the joint gramian are

g'
 
ans =
   1.0062e-01   6.8039e-05   1.0055e-05

which indicates that the last two states of sysb are weakly coupled to the input 
and output. You can then delete these states by

sysr = modred(sysb,[2 3],'del')

to obtain the following first-order approximation of the original system.

zpk(sysr)
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Zero/pole/gain:
 1.0001
--------
(s+4.97)

Compare the Bode responses of the original and reduced-order models.

bode(sys,'-',sysr,'x')

Example2 Create this unstable system:

sys1=tf(1,[1 0 -1])
 
Transfer function:
   1
-------
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s^2 - 1

Apply balreal to create a balanced gramian realization.

[sysb,g]=balreal(sys1)
 
a = 
       x1  x2
   x1   1   0
   x2   0  -1
 
 
b = 
           u1
   x1  0.7071
   x2  0.7071
 
 
c = 
            x1       x2
   y1   0.7071  -0.7071
 
 
d = 
       u1
   y1   0
 
Continuous-time model.

g =

       Inf
    0.2500

The unstable pole shows up as Inf in vector g.

Algorithm Consider the model

x· Ax Bu+=

y Cx Du+=
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with controllability and observability gramians  and . The state 
coordinate transformation  produces the equivalent model

and transforms the gramians to

The function balreal computes a particular similarity transformation   
such that

See [1,2] for details on the algorithm.

References [1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, “Computation of System 
Balancing Transformations and Other Applications of Simultaneous 
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987), 
pp. 115-122.

[2] Moore, B., “Principal Component Analysis in Linear Systems: 
Controllability, Observability, and Model Reduction,” IEEE Transactions on 
Automatic Control, AC-26 (1981), pp. 17-31.

[3] Laub, A.J., “Computation of Balancing Transformations,” Proc. ACC, San 
Francisco, Vol.1, paper FA8-E, 1980.

See Also gram Controllability and observability gramians
modred Model order reduction
ss Convert LTI model to state space
ssbal Balancing of state-space model using diagonal 

similarity

Wc Wo
x Tx=

x· TAT 1– x TBu+=

y CT 1– x Du+=

Wc TWcTT
= , Wo T T– WoT 1–

=

T

Wc Wo diag g( )= =
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1balredPurpose Model order reduction

Syntax rsys = balred(sys,ORDERS)
rsys = balred(sys,ORDERS,...,'Elimination',METHOD)
rsys = balred(sys,ORDERS,...,'Balancing',BALDATA)

Description rsys = balred(sys,ORDERS) computes a reduced-order approximation rsys of 
the LTI model sys.  The desired order (number of states) for rsys is specified 
by ORDERS.  You can try multiple orders at once by setting ORDERS to a vector of 
integers, in which case rsys is a vector of reduced-order models.  Use hsvd to 
plot the Hankel singular values and pick an adequate approximation order.  
States with relatively small Hankel singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable 
parts using stabsep, and only the stable part is approximated.  Use

sys = balred(sys,ORDERS,'AbsTol',ATOL,...
'RelTol',RTOL,'Offset',ALPHA)

to specify additional options for the stable/unstable decomposition. See 
stabsep for details.  The default values are ATOL=0, RTOL=1e-8, and 
ALPHA=1e-8.

rsys = balred(sys,ORDERS,...,'Elimination',METHOD) specifies the state 
elimination method.  Available choices for METHOD include:

• 'MatchDC' :  Enforce matching DC gains (default)

• 'Truncate':  Simply discard the states associated with small Hankel 
singular values. The 'Truncate' method tends to produce a better 
approximation in the frequency domain, but the DC gains are not 
guaranteed to match.

rsys = balred(sys,ORDERS,...,'Balancing',BALDATA) makes use of the 
balancing data BALDATA produced by hsvd.  Because hsvd does most of the work 
needed to compute rsys, this syntax is more efficient when using hsvd and 
balred jointly.

balred uses implicit balancing techniques to compute the reduced- order 
approximation rsys. 

There is more than one balred method available. Type
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help lti/balred

for more information.

References [1] Varga, A., “Balancing-Free Square-Root Algorithm for Computing Singular 
Perturbation Approximations,” Proc. of 30th IEEE CDC, Brighton, UK (1991), 
pp. 1062-1065.

See Also hvsd Computes the Hankel singular values of an LTI model
lti/order LTI model order
minreal Minimal realization and pole-zero cancellation
sminreal Compute a structurally minimal realization
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1bandwidthPurpose Compute the frequency response bandwidth

Syntax fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description fb = bandwidth(sys) computes the bandwidth fb of the SISO model sys, 
defined as the first frequency where the gain drops below 70.79 percent (-3 dB) 
of its DC value. The frequency fb is expressed in radians per second. You can 
create sys using tf, ss, or zpk. See ltimodels for details.

fb = bandwidth(sys,dbdrop) further specifies the critical gain drop in dB. 
The default value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of LTI models, bandwidth returns an array of 
the same size such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,jp))

See Also dcgain Compute the steady-state gain of LTI models
issiso Returns 1 if the system is SISO
ltimodels General information about LTI models
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1bodePurpose Compute the Bode frequency response of LTI models

Syntax bode(sys)
bode(sys,w)

bode(sys1,sys2,...,sysN)
bode(sys1,sys2,...,sysN,w)
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = bode(sys)

Description bode computes the magnitude and phase of the frequency response of LTI 
models. When invoked without left-side arguments, bode produces a Bode plot 
on the screen. The magnitude is plotted in decibels (dB), and the phase in 
degrees. The decibel calculation for mag is computed as 20log10 , where 

 is the system’s frequency response. Bode plots are used to analyze 
system properties such as the gain margin, phase margin, DC gain, bandwidth, 
disturbance rejection, and stability.

bode(sys) plots the Bode response of an arbitrary LTI model sys. This model 
can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode 
produces an array of Bode plots, each plot showing the Bode response of one 
particular I/O channel. The frequency range is determined automatically based 
on the system poles and zeros.

bode(sys,w) explicitly specifies the frequency range or frequency points to be 
used for the plot. To focus on a particular frequency interval [wmin,wmax], set 
w = {wmin,wmax}. To use particular frequency points, set w to the vector of 
desired frequencies. Use logspace to generate logarithmically spaced 
frequency vectors. All frequencies should be specified in radians/sec.

bode(sys1,sys2,...,sysN) or bode(sys1,sys2,...,sysN,w) plots the Bode 
responses of several LTI models on a single figure. All systems must have the 
same number of inputs and outputs, but may otherwise be a mix of continuous 
and discrete systems. This syntax is useful to compare the Bode responses of 
multiple systems.

bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN') specifies which color, 
linestyle, and/or marker should be used to plot each system. For example, 

H jω( )( )
H jω( )
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bode(sys1,'r--',sys2,'gx')

uses red dashed lines for the first system sys1 and green 'x' markers for the 
second system sys2.

When invoked with left-side arguments 

[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the 
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays with the 
frequency as the last dimension (see “Arguments” below for details). You can 
convert the magnitude to decibels by

magdb = 20*log10(mag)

Remark If sys is an FRD model, bode(sys,w), w can only include frequencies in 
sys.frequency. 

Arguments The output arguments mag and phase are 3-D arrays with dimensions

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and 
phase of the response at the frequency  = w(k).

MIMO systems are treated as arrays of SISO systems and the magnitudes and 
phases are computed for each SISO entry hij independently (hij is the transfer 
function from input j to output i). The values mag(i,j,k) and phase(i,j,k) 
then characterize the response of hij at the frequency w(k).

Example You can plot the Bode response of the continuous SISO system

number of outputs( ) number of inputs( )× length of w( )×

ωk

mag(1,1,k) h jωk( )=

phase(1,1,k) h jωk( )  ∠=

mag(i,j,k) hij jωk( )=

phase(i,j,k) hij jωk( )  ∠=
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by typing

g = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(g)

To plot the response on a wider frequency range, for example, from 0.1 to 100 
rad/sec, type

bode(g,{0.1 , 100})

You can also discretize this system using zero-order hold and the sample time 
 second, and compare the continuous and discretized responses by 

typing

gd = c2d(g,0.5)

H s( ) s2 0.1s 7.5+ +

s4 0.12s3 9s2
+ +

---------------------------------------------=

Ts 0.5=
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bode(g,'r',gd,'b--')

Algorithm For continuous-time systems, bode computes the frequency response by 
evaluating the transfer function  on the imaginary axis . Only 
positive frequencies  are considered. For state-space models, the frequency 
response is 

When numerically safe,  is diagonalized for maximum speed. Otherwise,  
is reduced to upper Hessenberg form and the linear equation  
is solved at each frequency point, taking advantage of the Hessenberg 
structure. The reduction to Hessenberg form provides a good compromise 
between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating 
the transfer function  on the unit circle. To facilitate interpretation, the 
upper-half of the unit circle is parametrized as

H s( ) s jω=
ω

D C jω A–( ) 1– B+  , ω 0≥

A A
jω A–( )X B=

H z( )

z e
jωTs= , 0 ω ωN≤ ≤ π

Ts
------=
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where  is the sample time.  is called the Nyquist frequency. The 
equivalent “continuous-time frequency”   is then used as the -axis variable. 
Because 

is periodic with period , bode plots the response only up to the Nyquist 
frequency . If the sample time is unspecified, the default value  is 
assumed.

Diagnostics If the system has a pole on the  axis (or unit circle in the discrete case) and 
w happens to contain this frequency point, the gain is infinite,   is 
singular, and bode produces the warning message

Singularity in freq. response due to jw-axis or unit circle pole.

References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,” 
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot
sigma Singular value plot

Ts ωN
ω x

H e
jωTs( )

2ωN
ωN Ts 1=

jω
jωI A–
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1bodemagPurpose Compute the Bode magnitude response of LTI models

Syntax bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)

bodemag(sys1,sys2,...,sysN,w)
bodemag(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

Description bodemag(sys) plots the magnitude of the frequency response of the LTI model 
SYS (Bode plot without the phase diagram). The frequency range and number 
of points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies between 
wmin and wmax (in radians/second).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in 
radians/second, at which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response magnitude of 
several LTI models sys1,sys2,...,sysN on a single plot. The frequency vector 
w is optional. You can also specify a color, line style, and marker for each model, 
as in 

       bodemag(sys1,'r',sys2,'y--',sys3,'gx').

See Also bode Compute the Bode frequency response of LTI models
ltiview Open an LTI Viewer
ltimodels Help on LTI models
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1bodeplotPurpose Compute the Bode frequency response and return the plot handle

Syntax h = bodeplot(sys)

h = bodeplot(sys1,sys2,...)
h = bodeplot(AX,...)
h = bodeplot(..., plotoptions)
h = bodeplot(sys,w)

Description h = bodeplot(sys) plot the Bode magnitude and phase of an LTI model sys 
and returns the plot handle h to the plot. You can use this handle to customize 
the plot with the getoptions and setoptions commands. Type

help bodeoptions 

for a list of available plot options.

bodeplot(sys) draws the Bode plot of the LTI model sys (created with either 
tf, zpk, ss, or frd). The frequency range and number of points are chosen 
automatically.

bodeplot(sys1,sys2,...) graphs the Bode response of multiple LTI models 
sys1,sys2,... on a single plot. You can specify a color, line style, and marker for 
each model, as in 

bodeplot(sys1,'r',sys2,'y--',sys3,'gx')

bodeplot(AX,...) plots into the axes with handle AX. 

bodeplot(..., plotoptions) plots the Bode response with the options 
specified in plotoptions.

bodeplot(sys,w) draws the Bode plot for frequencies specified by w. When w = 
{wmin,wmax}, the Bode plot is drawn for frequencies between wmin and wmax (in 
rad/s). When w is a user-supplied vector w of frequencies, in rad/s, the Bode 
response is drawn for the specified frequencies. 

See logspace to generate logarithmically spaced frequency vectors. 

    Example Use the plot handle to change options in a Bode plot.

sys = rss(5);
h = bodeplot(sys);
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% Change units to Hz and make phase plot invisible
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

See Also bode Bode plots (does not return the plot handle)
getoptions Get plot options from a plot
setoptions Set plot options
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1c2dPurpose Discretize continuous-time systems

Syntax sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,method)

Description sysd = c2d(sys,Ts) discretizes the continuous-time LTI model sys using 
zero-order hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) gives access to alternative discretization 
schemes. The string method selects the discretization method among the 
following:

Refer to “Continuous/Discrete Conversions of LTI Models” for more detail on 
these discretization methods.

'zoh' Zero-order hold. The control inputs are assumed piecewise 
constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold, see [1], p. 
151). The control inputs are assumed piecewise linear over 
the sampling period Ts.

'tustin' Bilinear (Tustin) approximation.

'prewarp' Tustin approximation with frequency prewarping. You must 
specify the critical frequency Wc (in rad/sec) as a fourth input 
as in

sysd = c2d(sysc,ts,'prewarp',Wc)

'matched' Matched pole-zero method. See [1], p. 147.
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c2d supports MIMO systems (except for the 'matched' method) as well as LTI 
models with delays with some restrictions for 'matched' and 'tustin' 
methods.

[sysd,G] = c2d(sys,Ts,method) returns a matrix G that maps the continuous 
initial conditions  and  to their discrete counterparts  and  
according to

Example Consider the system

with input delay  second. To discretize this system using the 
triangle approximation with sample time  second, type

H = tf([1 -1],[1 4 5],'inputdelay',0.35)

Transfer function:
                   s - 1
exp(-0.35*s) * -------------
               s^2 + 4 s + 5

Hd = c2d(H,0.1,'foh')

Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104
---------------------------------------------
        z^6 - 1.629 z^5 + 0.6703 z^4

Sampling time: 0.1

The next command compares the continuous and discretized step responses.

x0 u0 x 0[ ] u 0[ ]

u 0[ ] u0=

x 0[ ] G
x0

u0

⋅=

H s( ) s 1–

s2 4s 5+ +
----------------------------=

Td 0.35=
Ts 0.1=
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step(H,'-',Hd,'--')

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic 
Systems, Second Edition, Addison-Wesley, 1990.

See Also d2c Discrete to continuous conversion
d2d Resampling of discrete systems-.
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1canonPurpose Compute canonical state-space realizations

Syntax csys = canon(sys,'type')
[csys,T] = canon(sys,'type')

Description canon computes a canonical state-space model for the continuous or discrete 
LTI system sys. Two types of canonical forms are supported.

Modal Form
csys = canon(sys,'type') returns a realization csys in modal form, that is, 
where the real eigenvalues appear on the diagonal of the  matrix and the 
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of . 
For a system with eigenvalues , the modal  matrix is of the 
form

Companion Form
csys = canon(sys,'type') produces a companion realization of sys where the 
characteristic polynomial of the system appears explicitly in the rightmost 
column of the matrix. For a system with characteristic polynomial

the corresponding companion  matrix is

A
A

λ1 σ jω λ2,±,( ) A

λ1 0 0 0

0 σ ω 0
0 ω– σ 0
0 0 0 λ2

A

p s( ) sn a1sn 1– ... an 1– s an+ + + +=

A

A

0 0 .. .. 0 an–

1 0 0 .. 0 an 1––

0 1 0 . : :
: 0 . . : :
0 . . 1 0 a2–

0 .. .. 0 1 a1–

=
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For state-space models sys,

[csys,T] = canon(a,b,c,d,'type')

also returns the state coordinate transformation T relating the original state 
vector  and the canonical state vector .

This syntax returns T=[] when sys is not a state-space model.

Algorithm Transfer functions or zero-pole-gain models are first converted to state space 
using ss.

The transformation to modal form uses the matrix  of eigenvectors of the  
matrix. The modal form is then obtained as

The state transformation  returned is the inverse of .

The reduction to companion form uses a state similarity transformation based 
on the controllability matrix [1].

Limitations The modal transformation requires that the  matrix be diagonalizable. A 
sufficient condition for diagonalizability is that  has no repeated eigenvalues. 

The companion transformation requires that the system be controllable from 
the first input. The companion form is often poorly conditioned for most 
state-space computations; avoid using it when possible.

References [1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also ctrb Controllability matrix
ctrbf Controllability canonical form
ss2ss State similarity transformation

x xc

xc Tx=

P A

xc
· P 1– APxc P 1– Bu+=

y CPxc Du+=

T P

A
A
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1carePurpose Solve continuous-time algebraic Riccati equations

Syntax [X,L,G] = care(A,B,Q)
[X,L,G] = care(A,B,Q,R,S,E)
[X,L,G,report] = care(A,B,Q,...)

[X1,X2,D,L] = care(A,B,Q,...,'factor')

Description [X,L,G] = care(A,B,Q) computes the unique solution X of the continuous-time 
algebraic Riccati equation

The care function also returns the gain matrix, .

[X,L,G] = care(A,B,Q,R,S,E) solves the more general Riccati equation

When omitted, R, S, and E are set to the default values R=I, S=0,and E=I. Along 
with the solution X, care returns the gain matrix  and a 
vector L of closed-loop eigenvalues, where 

L=eig(A-B*G,E)

[X,L,G,report] = care(A,B,Q, ...) returns a diagnosis report with:

• −1 when the associated Hamiltonian pencil has eigenvalues on or very near 
the imaginary axis (failure)

• −2 when there is no finite stabilizing solution X

• The Frobenius norm of the relative residual if X exists and is finite.

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = care(A,B,Q,...,'factor') returns two matrices X1, X2 and a 
diagonal scaling matrix D such that X = D*(X2/X1)*D.

The vector L contains the closed-loop eigenvalues. All outputs are empty when 
the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

ATX XA XBBTX– Q+ + 0=

G R 1– B
T

XE=

ATXE ETXA ETXB S+( )R 1– BTXE ST
+( )– Q+ + 0=

G R 1– BTXE ST
+( )=
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Examples Example 1
Given 

you can solve the Riccati equation

by

a = [-3 2;1 1]
b = [0 ; 1]
c = [1 -1]
r = 3
[x,l,g] = care(a,b,c'*c,r)

This yields the solution

x

x =
    0.5895    1.8216
    1.8216    8.8188

You can verify that this solution is indeed stabilizing by comparing the 
eigenvalues of a and a-b*g.

[eig(a) eig(a-b*g)]
 
ans =
   -3.4495   -3.5026
    1.4495   -1.4370

Finally, note that the variable l contains the closed-loop eigenvalues 
eig(a-b*g).

l

l =
   -3.5026

A 3– 2
1 1

= B 0
1

= C 1  1–= R 3=

ATX XA XBR 1– B
T

X– CTC+ + 0=
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   -1.4370

Example 2
To solve the -like Riccati equation

rewrite it in the care format as

You can now compute the stabilizing solution  by

B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]

X = care(A,B,C'*C,R)

Algorithm care implements the algorithms described in [1]. It works with the 
Hamiltonian matrix when  is well-conditioned and ; otherwise it uses 
the extended Hamiltonian pencil and QZ algorithm.

Limitations The  pair must be stabilizable (that is, all unstable modes are 
controllable). In addition, the associated Hamiltonian matrix or pencil must 
have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold 
are  detectable when  and , or

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms 
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984),
pp. 1746-1754.

H∞

ATX XA X γ 2– B1B1
T B2B2

T
–( )X+ + CTC+ 0=

ATX XA X B1 B2,[ ] γ 2– I  – 0
0 I

1–
B1

T

B2
T

X– CTC+ + 0=

B
R

⎧ ⎪ ⎨ ⎪ ⎩
⎧ ⎪ ⎨ ⎪ ⎩

X

R E I=

A B,( )

Q A,( ) S 0= R 0>

Q S

ST R
0>
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See Also dare Solve discrete-time Riccati equations
lyap Solve continuous-time Lyapunov equations
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1chgunitsPurpose Convert the frequency units of an FRD model

Syntax sys = chgunits(sys,units) 

Description sys = chgunits(sys,units) converts the units of the frequency points stored 
in an FRD model, sys to units, where units is either of the strings 'Hz' or 
'rad/s'. This operation changes the assigned frequencies by applying the 
appropriate (2*pi) scaling factor, and the 'Units' property is updated. 

If the 'Units' field already matches units, no conversion is made.

Example w = logspace(1,2,2);
sys = rss(3,1,1);
sys = frd(sys,w)

From input 'input 1' to:

  Frequency(rad/s)        output 1     
  ----------------        --------     

          10         0.293773+0.001033i

         100         0.294404+0.000109i

Continuous-time frequency response data.

sys = chgunits(sys,'Hz')
sys.freq

ans =
    1.5915
   15.9155

See Also frd Create or convert to an FRD model
get Get the properties of an LTI model
set Set the properties of an LTI model
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1conjPurpose Form a model with complex conjugate coefficients

Syntax sysc = conj(sys)

Description sysc = conj(sys) is an constructs a complex conjugate model sysc by applying 
complex conjugation to all coefficients of the LTI model sys. This function 
accepts LTI models in transfer function (TF), zero/pole/gain (ZPK), and state 
space (SS) formats.

Example If sys is the transfer function

(2+i)/(s+i)

then conj(sys) produces the transfer function 

(2-i)/(s-i)

This operation is useful for manipulating partial fraction expansions.

See Also append Append LTI systems
ss Specify or convert to state-space form
tf Specify or convert to transfer function form
zpk Specify or convert to zero-pole-gain form
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1connectPurpose Derive state-space model from block diagram description

Syntax sysc = connect(sys,Q,inputs,outputs)

Description Complex dynamical systems are often given in block diagram form. For 
systems of even moderate complexity, it can be quite difficult to find the 
state-space model required in order to bring certain analysis and design tools 
into use. Starting with a block diagram description, you can use append and 
connect to construct a state-space model of the system.

First, use 

sys = append(sys1,sys2,...,sysN)

to specify each block sysj in the diagram and form a block-diagonal, 
unconnected LTI model sys of the diagram.

Next, use

sysc = connect(sys,Q,inputs,outputs)

to connect the blocks together and derive a state-space model sysc for the 
overall interconnection. The arguments Q, inputs, and outputs have the 
following purpose:

• The matrix Q indicates how the blocks on the diagram are connected. It has 
a row for each input of sys, where the first element of each row is the input 
number. The subsequent elements of each row specify where the block input 
gets its summing inputs; negative elements indicate minus inputs to the 
summing junction. For example, if input 7 gets its inputs from the outputs 2, 
15, and 6, where the input from output 15 is negative, the corresponding row 
of Q is [7  2 -15  6]. Short rows can be padded with trailing zeros (see 
example below).

• Given sys and Q, connect computes a state-space model of the 
interconnection with the same inputs and outputs as sys (that is, the 
concatenation of all block inputs and outputs). The index vectors inputs and 
outputs then indicate which of the inputs and outputs in the large 
unconnected system are external inputs and outputs of the block diagram. 
For example, if the external inputs are inputs 1, 2, and 15 of sys, and the 
external outputs are outputs 2 and 7 of sys, then inputs and outputs should 
be set to
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inputs = [1 2 15]; 
outputs = [2 7]; 

The final model sysc has these particular inputs and outputs.

Since it is easy to make a mistake entering all the data required for a large 
model, be sure to verify your model in as many ways as you can. Here are some 
suggestions: 

• Make sure the poles of the unconnected model sys match the poles of the 
various blocks in the diagram.

• Check that the final poles and DC gains are reasonable.

• Plot the step and bode responses of sysc and compare them with your 
expectations.

The connect function does not support delays in a reliable way. If you need to 
work extensively with block diagrams or you need to interconnect models with 
time delays, Simulink® is a much easier and more comprehensive tool for 
model building.

Example Consider the following block diagram.

Given the matrices of the state-space model sys2,

A = [ -9.0201  17.7791 
-1.6943  3.2138 ];

B = [ -.5112  .5362

x· Ax Bu+=

y Cx Du+=

2 s 1+( )
s 2+

--------------------

10
s 5+
------------

y1

y2u2

u1

uc

sys1

sys2

sys3

+

–
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-.002  -1.8470];
C = [ -3.2897  2.4544

-13.5009  18.0745];
D = [-.5476  -.1410

-.6459  .2958 ];

Define the three blocks as individual LTI models.

sys1 = tf(10,[1 5],'inputname','uc')
sys2 = ss(A,B,C,D,'inputname',{'u1' 'u2'},...

'outputname',{'y1' 'y2'})
sys3 = zpk(-1,-2,2)

Next append these blocks to form the unconnected model sys.

sys = append(sys1,sys2,sys3)

This produces the block-diagonal model

sys
 
a = 
                        x1           x2           x3           x4
           x1           -5            0            0            0
           x2            0      -9.0201       17.779            0
           x3            0      -1.6943       3.2138            0
           x4            0            0            0           -2
 
 
b = 
                        uc           u1           u2            ?
           x1            4            0            0            0
           x2            0      -0.5112       0.5362            0
           x3            0       -0.002       -1.847            0
           x4            0            0            0       1.4142

 

c = 
                        x1           x2           x3           x4
            ?          2.5            0            0            0
           y1            0      -3.2897       2.4544            0
           y2            0      -13.501       18.075            0
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            ?            0            0            0      -1.4142
 
 
d = 
                        uc           u1           u2            ?
            ?            0            0            0            0
           y1            0      -0.5476       -0.141            0
           y2            0      -0.6459       0.2958            0
            ?            0            0            0            2
 
Continuous-time system.

Note that the ordering of the inputs and outputs is the same as the block 
ordering you chose. Unnamed inputs or outputs are denoted b.

To derive the overall block diagram model from sys, specify the 
interconnections and the external inputs and outputs. You need to connect 
outputs 1 and 4 into input 3 (u2), and output 3 (y2) into input 4. The 
interconnection matrix Q is therefore

Q = [3 1 -4
4 3 0];

Note that the second row of Q has been padded with a trailing zero. The block 
diagram has two external inputs uc and u1 (inputs 1 and 2 of sys), and two 
external outputs y1 and y2 (outputs 2 and 3 of sys). Accordingly, set inputs 
and outputs as follows.

inputs = [1 2];
outputs = [2 3];

You can obtain a state-space model for the overall interconnection by typing

sysc = connect(sys,Q,inputs,outputs)

a = 
                        x1           x2           x3           x4
           x1           -5            0            0            0
           x2      0.84223     0.076636       5.6007      0.47644
           x3      -2.9012      -33.029       45.164      -1.6411
           x4      0.65708      -11.996        16.06      -1.6283
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b = 
                        uc           u1
           x1            4            0
           x2            0    -0.076001
           x3            0      -1.5011
           x4            0     -0.57391
 
 
c = 
                        x1           x2           x3           x4
           y1     -0.22148      -5.6818       5.6568     -0.12529
           y2      0.46463      -8.4826       11.356      0.26283
 
 
d = 
                        uc           u1
           y1            0     -0.66204
           y2            0     -0.40582
 
Continuous-time system.

Note that the inputs and outputs are as desired.

References [1] Edwards, J.W., “A Fortran Program for the Analysis of Linear Continuous 
and Sampled-Data Systems,” NASA Report TM X56038, Dryden Research 
Center, 1976.

See Also append Append LTI systems
feedback Feedback connection
minreal Minimal state-space realization
parallel Parallel connection
series Series connection
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1covarPurpose Output and state covariance of a system driven by white noise

Syntax [P,Q] = covar(sys,W)

Description covar calculates the stationary covariance of the output  of an LTI model sys 
driven by Gaussian white noise inputs . This function handles both 
continuous- and discrete-time cases.

P = covar(sys,W) returns the steady-state output response covariance

given the noise intensity

[P,Q] = covar(sys,W) also returns the steady-state state covariance

when sys is a state-space model (otherwise Q is set to []).

When applied to an N-dimensional LTI array sys, covar returns 
multidimensional arrays P, Q such that

P(:,:,i1,...iN) and Q(:,:,i1,...iN) are the covariance matrices for the 
model sys(:,:,i1,...iN).

Example Compute the output response covariance of the discrete SISO system

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)

and MATLAB® returns

y
w

P E yyT( )=

E w t( )w τ( )T( ) W δ t τ–( )=            (continuous time)

E w k[ ]w l[ ]T( ) W δkl=  (discrete time)     

Q E xxT( )=

H z( ) 2z 1+

z2 0.2z 0.5+ +
-------------------------------------- ,= Ts 0.1=
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p =
30.3167

You can compare this output of covar to simulation results.

randn('seed',0)
w = sqrt(5)∗randn(1,1000); % 1000 samples

% Simulate response to w with LSIM:
y = lsim(sys,w);

% Compute covariance of y values
psim = sum(y .∗ y)/length(w);

This yields

psim = 
32.6269

The two covariance values p and psim do not agree perfectly due to the finite 
simulation horizon.

Algorithm Transfer functions and zero-pole-gain models are first converted to state space 
with ss.

For continuous-time state-space models

 is obtained by solving the Lyapunov equation

The output response covariance  is finite only when  and then 
. 

In discrete time, the state covariance solves the discrete Lyapunov equation

and  is given by 

x· Ax Bw+=

y Cx Dw+=

Q

AQ QAT BWBT
+ + 0=

P D 0=
P CQCT

=

AQAT Q– BWBT
+ 0=

P P CQCT DWDT
+=
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Note that  is well defined for nonzero  in the discrete case.

Limitations The state and output covariances are defined for stable systems only. For 
continuous systems, the output response covariance  is finite only when the 

 matrix is zero (strictly proper system).

References [1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere 
Publishing, 1975, pp. 458-459.

See Also dlyap Solver for discrete-time Lyapunov equations
lyap Solver for continuous-time Lyapunov equations

P D

P
D
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1ctrbPurpose Form the controllability matrix

Syntax Co = ctrb(A,B)
Co = ctrb(sys)

Description ctrb computes the controllability matrix for state-space systems. For an 
n-by-n matrix A and an n-by-m matrix B, ctrb(A,B) returns the controllability 
matrix

(1-1)

where  has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI 
object sys. This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Example Check if the system with the following data

A =
     1     1
     4    -2

B =
     1    -1
     1    -1

is controllable. Type

Co=ctrb(A,B);

% Number of uncontrollable states
unco=length(A)-rank(Co)

and MATLAB returns

unco =
     1

Co B AB A2B … An 1– B=

Co
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Limitations Estimating the rank of the controllability matrix is ill-conditioned; that is, it is 
very sensitive to roundoff errors and errors in the data. An indication of this 
can be seen from this simple example.

This pair is controllable if  but if , where eps is the relative 
machine precision. ctrb(A,B) returns

which is not full rank. For cases like these, it is better to determine the 
controllability of a system using ctrbf.

See Also ctrbf Compute the controllability staircase form
obsv Compute the observability matrix

A 1 δ
0 1

,= B 1
δ

=

δ 0≠ δ eps<

B AB
1 1
δ δ

=
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1ctrbfPurpose Compute the controllability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C,tol)

Description If the controllability matrix of  has rank , where n is the size of 
, then there exists a similarity transformation such that 

where  is unitary, and the transformed system has a staircase form, in which 
the uncontrollable modes, if there are any, are in the upper left corner.

where  is controllable, all eigenvalues of  are uncontrollable, and 

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system 
represented by A, B, and C into the controllability staircase form, Abar, Bbar, 
and Cbar, described above. T is the similarity transformation matrix and k is a 
vector of length n, where n is the order of the system represented by A. Each 
entry of k represents the number of controllable states factored out during each 
step of the transformation matrix calculation. The number of nonzero elements 
in k indicates how many iterations were necessary to calculate T, and sum(k) is 
the number of states in , the controllable portion of Abar.

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to 
10*n*norm(A,1)*eps.

Example Compute the controllability staircase form for

A =
     1     1
     4    -2

A B,( ) r n≤
A

A TATT,= B TB,= C CTT
=

T

A
Auc 0

A21 Ac

,= B
0

Bc
,= C Cnc Cc=

Ac Bc,( ) Auc

Cc sI Ac–( ) 1– Bc C sI A–( ) 1– B.=

Ac
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B =
     1    -1
     1    -1

C =
     1     0
     0     1

and locate the uncontrollable mode.

[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =
   -3.0000         0
   -3.0000    2.0000

Bbar =
    0.0000    0.0000
    1.4142   -1.4142

Cbar =
   -0.7071    0.7071
    0.7071    0.7071

T =
   -0.7071    0.7071
    0.7071    0.7071
k =
     1     0

The decomposed system Abar shows an uncontrollable mode located at –3 and 
a controllable mode located at 2.

Algorithm ctrbf is an M-file that implements the Staircase Algorithm of [1].

References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 
1970.

See Also ctrb Form the controllability matrix
minreal Minimum realization and pole-zero cancellation
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1d2cPurpose Convert discrete-time LTI models to continuous time

Syntax sysc = d2c(sysd)
sysc = d2c(sysd,method)

Description d2c converts LTI models from discrete to continuous time using one of the 
following conversion methods:

The string method specifies the conversion method. If method is omitted then 
zero-order hold ('zoh') is assumed. See “Continuous/Discrete Conversions of 
LTI Models” for more details on the conversion methods.

Example Consider the discrete-time model with transfer function

and sample time  second. You can derive a continuous-time 
zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hc with the zero-order hold method (this is the 
default method) and sampling period  gives back the original discrete 
model . To see this, type

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H,'tustin')

As with zero-order hold, the inverse discretization operation

'zoh' Zero-order hold on the inputs. The control inputs are 
assumed piecewise constant over the sampling period.

'tustin' Bilinear (Tustin) approximation to the derivative.

'prewarp' Tustin approximation with frequency prewarping.

'matched' Matched pole-zero method of [1] (for SISO systems only).

H z( ) z 1–

z2 z 0.3+ +
-----------------------------=

Ts 0.1=

Ts 0.1=
H z( )
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c2d(Hc,0.1,'tustin')

gives back the original .

Algorithm The 'zoh' conversion is performed in state space and relies on the matrix 
logarithm (see logm in the MATLAB documentation).

Limitations The Tustin approximation is not defined for systems with poles at  and 
is ill-conditioned for systems with poles near .

The zero-order hold method cannot handle systems with poles at . In 
addition, the 'zoh' conversion increases the model order for systems with 
negative real poles, [2]. This is necessary because the matrix logarithm maps 
real negative poles to complex poles. As a result, a discrete model with a single 
pole at  would be transformed to a continuous model with a single 
complex pole at . Such a model is not meaningful 
because of its complex time response.

To ensure that all complex poles of the continuous model come in conjugate 
pairs, d2c replaces negative real poles  with a pair of complex conjugate 
poles near . The conversion then yields a continuous model with higher 
order. For example, the discrete model with transfer function

and sample time 0.1 second is converted by typing

Ts = 0.1
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H) 

MATLAB responds with

Warning: System order was increased to handle real negative poles.
 
Zero/pole/gain:
  -33.6556 (s-6.273) (s^2 + 28.29s + 1041)
--------------------------------------------
(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)

Convert Hc back to discrete time by typing

H z( )

z 1–=
z 1–=

z 0=

z 0.5–=
0.5–( )log 0.6931– jπ+≈

z α–=
α–

H z( ) z 0.2+

z 0.5+( ) z2 z 0.4+ +( )
---------------------------------------------------------=
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c2d(Hc,Ts)

yielding

Zero/pole/gain:
     (z+0.5) (z+0.2)
-------------------------
(z+0.5)^2 (z^2 + z + 0.4)
 
Sampling time: 0.1

This discrete model coincides with  after canceling the pole/zero pair at 
.

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic 
Systems, Second Edition, Addison-Wesley, 1990.

[2] Kollár, I., G.F. Franklin, and R. Pintelon, “On the Equivalence of z-domain 
and s-domain Models in System Identification,” Proceedings of the IEEE 
Instrumentation and Measurement Technology Conference, Brussels, Belgium, 
June, 1996, Vol. 1, pp. 14-19.

See Also c2d Continuous- to discrete-time conversion
d2d Resampling of discrete models
logm Matrix logarithm

H z( )
z 0.5–=
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1d2dPurpose Resample discrete-time LTI models or add input delays

Syntax sys1 = d2d(sys,Ts)

Description sys1 = d2d(sys,Ts) resamples the discrete-time LTI model sys to produce an 
equivalent discrete-time model sys1 with the new sample time Ts (in seconds). 
The resampling assumes zero-order hold on the inputs and is equivalent to 
consecutive d2c and c2d conversions.

sys1 = c2d(d2c(sys),Ts)

Example Consider the zero-pole-gain model

with sample time 0.1 second. You can resample this model at 0.05 second by 
typing

H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)

Zero/pole/gain:
(z-0.8243)
----------
(z-0.7071)
 
Sampling time: 0.05

Note that the inverse resampling operation, performed by typing d2d(H2,0.1), 
yields back the initial model .

Zero/pole/gain:
(z-0.7)
-------
(z-0.5)
 
Sampling time: 0.1

See Also c2d Continuous- to discrete-time conversion
d2c Discrete- to continuous-time conversion

H z( ) z 0.7–
z 0.5–
-----------------=

H z( )
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1dampPurpose Compute damping factors and natural frequencies

Syntax [Wn,Z] = damp(sys)
[Wn,Z,P] = damp(sys)

Description damp calculates the damping factor and natural frequencies of the poles of an 
LTI model sys. When invoked without lefthand arguments, a table of the 
eigenvalues in increasing frequency, along with their damping factors and 
natural frequencies, is displayed on the screen.

[Wn,Z] = damp(sys) returns column vectors Wn and Z containing the natural 
frequencies  and damping factors  of the poles of sys. For discrete-time 
systems with poles  and sample time , damp computes “equivalent” 
continuous-time poles  by solving

The values Wn and Z are then relative to the continuous-time poles . Both Wn 
and Z are empty if the sample time is unspecified.

[Wn,Z,P] = damp(sys) returns an additional vector P containing the (true) 
poles of sys. Note that P returns the same values as pole(sys) (up to 
reordering).

Example Compute and display the eigenvalues, natural frequencies, and damping 
factors of the continuous transfer function

Type

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1
---------------
 s^2 + 2 s + 3

Type

ωn ζ
z Ts

s

z e
sTs=

s

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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damp(H)

and MATLAB returns

Eigenvalue            Damping     Freq. (rad/s)  
                                                         
-1.00e+000 + 1.41e+000i     5.77e-001      1.73e+000    
-1.00e+000 - 1.41e+000i     5.77e-001      1.73e+000 

See Also eig Calculate eigenvalues and eigenvectors
esort,dsort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
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1darePurpose Solve discrete-time algebraic Riccati equations (DARE)

Syntax [X,L,G] = dare(A,B,Q,R)
[X,L,G] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...)
[X1,X2,L,report] = dare(A,B,Q,...,'factor')

Description [X,L,G] = dare(A,B,Q,R) computes the unique stabilizing solution X of the 
discrete-time algebraic Riccati equation

The dare function also returns the gain matrix, , and 
the vector L of closed loop eigenvalues, where 

L=eig(A-B*G,E)

[X,L,G] = dare(A,B,Q,R,S,E) solves the more general discrete-time 
algebraic Riccati equation,

or, equivalently, if R is nonsingular,

where . When omitted, R, S, and E are set to the default values 
R=I, S=0, and E=I.

The dare function returns the corresponding gain matrix

and a vector L of closed-loop eigenvalues, where

L= eig(A-B*G,E)

[X,L,G,report] = dare(A,B,Q,...) returns a diagnosis report with value:

• −1 when the associated symplectic pencil has eigenvalues on or very near the 
unit circle

ATXA X– ATXB BTXB R+( )
1–
BTXA– Q+ 0=

G BTXB R+( )
1–
BTXA=

ATXA ETXE– ATXB S+( ) BTXB R+( )
1–

BTXA ST
+( )– Q+ 0=

ETXE FT
= XF FTXB BTXB R+( )

1–
– BTXF Q SR 1– ST

–+ +

F A BR 1– S–=

G BTXB R+( )
1–

BTXA ST
+( )=
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• −2 when there is no finite stabilizing solution X

• The Frobenius norm if X exists and is finite 

[X1,X2,L,report] = dare(A,B,Q,...,'factor') returns two matrices, X1 
and X2, and a diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector 
L contains the closed-loop eigenvalues. All outputs are empty when the 
associated Symplectic matrix has eigenvalues on the unit circle.

Algorithm dare implements the algorithms described in [1]. It uses the QZ algorithm to 
deflate the extended symplectic pencil and compute its stable invariant 
subspace.

Limitations The  pair must be stabilizable (that is, all eigenvalues of  outside the 
unit disk must be controllable). In addition, the associated symplectic pencil 
must have no eigenvalue on the unit circle. Sufficient conditions for this to hold 
are  detectable when  and , or

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms 
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp. 
1746-1754.

See Also care Solve continuous-time algebraic Riccati equations
dlyap Solve discrete-time Lyapunov equations
gdare Solve generalized discrete-time algebraic Riccati 

equations

A B,( ) A

Q A,( ) S 0= R 0>

Q S

ST R
0>
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1dcgainPurpose Compute low frequency (DC) gain of LTI system

Syntax k = dcgain(sys)

Description k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time
The continuous-time DC gain is the transfer function value at the frequency 

. For state-space models with matrices , this value is

Discrete Time
The discrete-time DC gain is the transfer function value at . For 
state-space models with matrices , this value is

Remark The DC gain is infinite for systems with integrators.

Example To compute the DC gain of the MIMO transfer function

type

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])]
dcgain(H)

ans =
    1.0000   -0.3333
    1.0000   -0.6667

See Also evalfr Evaluates frequency response at single frequency
norm LTI system norms

s 0= A B C D, , ,( )

K D CA 1– B–=

z 1=
A B C D, , ,( )

K D C I A–( ) 1– B+=

H s( )
1 s 1–

s2 s 3+ +
------------------------

1
s 1+
------------ s 2+

s 3–
------------

=
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1delay2zPurpose Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or 
replace delays of FRD models by a phase shift

Syntax sys = delay2z(sys) 

Description sys = delay2z(sys) maps all time delays to poles at z=0 for discrete-time TF, 
ZPK, or SS models sys. Specifically, a delay of k sampling periods is replaced 
by (1/z)^k in the transfer function corresponding to the model.

For FRD models, delay2z absorbs all time delays into the frequency response 
data, and is applicable to both continuous- and discrete-time FRDs.

Example z=tf('z',-1);
sys=(-.4*z -.1)/(z^2 + 1.05*z + .08)

Transfer function:

-0.4 z - 0.1
-------------------
z^2 + 1.05 z + 0.08

Sampling time: unspecified

sys.InputDelay = 1;
sys = delay2z(sys)

Transfer function:

     -0.4 z - 0.1
-----------------------
z^3 + 1.05 z^2 + 0.08 z

Sampling time: unspecified

See Also hasdelay True for LTI models with delays
pade Pade approximation of time delays
totaldelay Combine delays for an LTI model
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1dlqrPurpose Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant

Syntax [K,S,e] = dlqr(a,b,Q,R)
[K,S,e] = dlqr(a,b,Q,R,N)

Description [K,S,e] = dlqr(a,b,Q,R,N) calculates the optimal gain matrix K such that 
the state-feedback law

minimizes the quadratic cost function

for the discrete-time state-space mode

l

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, dlqr returns the infinite horizon 
solution S of the associated discrete-time Riccati equation

and the closed-loop eigenvalues e = eig(a-b*K). Note that K is derived from 
S by

Limitations The problem data must satisfy:

• The pair  is stabilizable.

•  and .

•  has no unobservable mode on the unit circle.

See Also dare Solve discrete Riccati equations
lqgreg LQG regulator

u n[ ] Kx n[ ]–=

J u( ) x n[ ]TQx n[ ] u n[ ]TRu n[ ] 2x n[ ]TNu n[ ]+ +( )

n 1=

∞

∑=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

ATSA S– ATSB N+( ) BTSB R+( )
1–

BTSA NT
+( )– Q+ 0=

K BTSB R+( )
1–

BTSA NT
+( )=

A B,( )
R 0> Q NR 1– NT

– 0≥
Q NR 1– NT

– A BR 1– NT
–,( )
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lqr State-feedback LQ regulator for continuous plant
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting
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1dlyapPurpose Solve discrete-time Lyapunov equations

Syntax X = dlyap(A,Q)
X = dlyap(A,B,C)
X = dlyap(A,Q,[],E)

Description X = dlyap(A,Q) solves the discrete-time Lyapunov equation

where  and  are -by-  matrices.

The solution  is symmetric when  is symmetric, and positive definite when 
 is positive definite and  has all its eigenvalues inside the unit disk.

X = dlyap(A,B,C) solves the Sylvester equation

where A, B, and C must have compatible dimensions but need not be square.

X = dlyap(A,Q,[],E) solves the generalized discrete-time Lyapunov equation

where Q is a symmetric matrix. The empty square brackets, [], are mandatory. 
If you place any values inside them, the function will error out.

Algorithm dlyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations 
and SB04QD (SLICOT) for Sylvester equations.

Diagnostics The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues 
 of  satisfy  for all .

If this condition is violated, dlyap produces the error message

Solution does not exist or is not unique.

See Also covar Covariance of system response to white noise
lyap Solve continuous Lyapunov equations

AXAT X– Q+ 0=

A Q n n

X Q
Q A

AXBT X– C+ 0=

AXAT EXET
– Q+ 0=

α1 α2 ... αn, , , A αiαj 1≠ i j,( )
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1dlyapcholPurpose Square-root solver for continuous-time Lyapunov equations

Syntax R = dlyapchol(A,B)
R = dlyapchol(A,B,E)

Description R = dlyapchol(A,B) computes a Cholesky factorization X = R'*R of the 
solution X to the Lyapunov matrix equation:

A*X*A'- X + B*B' = 0

All eigenvalues of A matrix must lie in the open unit disk for R to exist.

X = dlyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving 
the Sylvester equation

A*X*A' - E*X*E' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open unit disk for R to exist.

Algorithm dlyapchol uses SLICOT routines SB03OD and SG03BD.

See Also dlyap Solver for discrete-time Lyapunov equations
lyapchol Square-root solver for continuous-time Lyapunov 

equations



drss

1-72

1drssPurpose Generate stable random discrete test models

Syntax sys = drss(n)
sys = drss(n,p)
sys = drss(n,p,m)
sys = drss(n,p,m,s1,...sn)

Description sys = drss(n) produces a random n-th order stable model with one input and 
one output, and returns the model in the state-space object sys.

drss(n,p) produces a random n-th order stable model with one input and p 
outputs.

drss(n,m,p) generates a random n-th order stable model with m inputs and p 
outputs.

drss(n,p,m,s1,...sn) generates a s1–by–sn array of random n-th order 
stable model with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has 
an unspecified sampling time. To generate transfer function or zero-pole-gain 
systems, convert sys using tf or zpk.

Example Generate a random discrete LTI system with three states, two inputs, and two 
outputs.

sys = drss(3,2,2)
 
a = 
                        x1           x2           x3
           x1      0.38630     -0.21458     -0.09914
           x2     -0.23390     -0.15220     -0.06572
           x3     -0.03412      0.11394     -0.22618

b = 
                        u1           u2
           x1      0.98833      0.51551
           x2            0      0.33395
           x3      0.42350      0.43291
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c = 
                        x1           x2           x3
           y1      0.22595      0.76037            0
           y2            0            0            0
 
d = 
                        u1           u2
           y1            0      0.68085
           y2      0.78333      0.46110
 
Sampling time: unspecified
Discrete-time system.

See Also rss Generate stable random continuous test models
tf Convert LTI systems to transfer functions form
zpk Convert LTI systems to zero-pole-gain form
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1dsortPurpose Sort discrete-time poles by magnitude

Syntax s = dsort(p)
[s,ndx] = dsort(p)

Description dsort sorts the discrete-time poles contained in the vector p in descending 
order by magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s. 

[s,ndx] = dsort(p) also returns the vector ndx containing the indices used in 
the sort.

Example Sort the following discrete poles.

p =
  -0.2410 + 0.5573i
  -0.2410 - 0.5573i
   0.1503         
  -0.0972         
  -0.2590 

s = dsort(p)

s =
  -0.2410 + 0.5573i
  -0.2410 - 0.5573i
  -0.2590         
   0.1503         
  -0.0972 

Limitations The poles in the vector p must appear in complex conjugate pairs.

See Also eig Calculate eigenvalues and eigenvectors
esort, sort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
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1dssPurpose Specify descriptor state-space models

Syntax sys = dss(a,b,c,d,e)
sys = dss(a,b,c,d,e,Ts)
sys = dss(a,b,c,d,e,ltisys)

sys = dss(a,b,c,d,e,'Property1',Value1,...,'PropertyN',ValueN)
sys = dss(a,b,c,d,e,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description sys = dss(a,b,c,d,e) creates the continuous-time descriptor state-space 
model

The  matrix must be nonsingular. The output sys is an SS model storing the 
model data (see “LTI Objects” on page 2-3). Note that ss produces the same 
type of object. If the matrix , do can simply set d to the scalar 0 (zero).

sys = dss(a,b,c,d,e,Ts) creates the discrete-time descriptor model

with sample time Ts (in seconds).

sys = dss(a,b,c,d,e,ltisys) creates a descriptor model with generic LTI 
properties inherited from the LTI model ltisys (including the sample time). 
See “LTI Properties” on page 2-26 for an overview of generic LTI properties.

Any of the previous syntaxes can be followed by property name/property value 
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the 
input names or some notes on the model history. See set and the example 
below for details.

Example The command

Ex· Ax Bu+=

y Cx Du+=

E

D 0=

Ex n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=
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sys = dss(1,2,3,4,5,'td',0.1,'inputname','voltage',...
'notes','Just an example')

creates the model

with a 0.1 second input delay. The input is labeled 'voltage', and a note is 
attached to tell you that this is just an example.

See Also dssdata Retrieve  matrices of descriptor model
get Get properties of LTI models
set Set properties of LTI models
ss Specify (regular) state-space models

5x· x 2u+=

y 3x 4u+=

A B C D E, , , ,



dssdata

1-77

1dssdataPurpose Quick access to descriptor state-space data

Syntax [a,b,c,d,e] = dssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)

Description [a,b,c,d,e] = dssdata(sys) extracts the descriptor matrix data 
 from the state-space model sys. If sys is a transfer function or 

zero-pole-gain model, it is first converted to state space. Note that dssdata is 
then equivalent to ssdata because it always returns .

[a,b,c,d,e,Ts] = dssdata(sys) also returns the sample time Ts. 

You can access the remaining LTI properties of sys with get or by direct 
referencing, for example,

sys.notes

See Also dss Specify descriptor state-space models
get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D E, , , ,( )

E I=
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1esortPurpose Sort continuous-time poles by real part

Syntax s = esort(p)
[s,ndx] = esort(p)

Description esort sorts the continuous-time poles contained in the vector p by real part. 
Unstable eigenvalues appear first and the remaining poles are ordered by 
decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted 
eigenvalues in s.

[s,ndx] = esort(p) returns the additional argument ndx, a vector containing 
the indices used in the sort.

Example Sort the following continuous eigenvalues.

p
p =
  -0.2410+ 0.5573i
  -0.2410- 0.5573i
   0.1503         
  -0.0972         
  -0.2590 

esort(p)

ans =
   0.1503         
  -0.0972         
  -0.2410+ 0.5573i
  -0.2410- 0.5573i
  -0.2590 

Limitations The eigenvalues in the vector p must appear in complex conjugate pairs.

See Also dsort, sort Sort system poles
eig Calculate eigenvalues and eigenvectors
pole Compute system poles
pzmap Pole-zero map
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zero Compute (transmission) zeros
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1estimPurpose Form state estimator given estimator gain

Syntax est = estim(sys,L)
est = estim(sys,L,sensors,known)

Description est = estim(sys,L) produces a state/output estimator est given the plant 
state-space model sys and the estimator gain L. All inputs  of sys are 
assumed stochastic (process and/or measurement noise), and all outputs  are 
measured. The estimator est is returned in state-space form (SS object). For a 
continuous-time plant sys with equations

estim generates plant output and state estimates  and  as given by the 
following model.

The discrete-time estimator has similar equations.

est = estim(sys,L,sensors,known) handles more general plants sys with 
both known inputs  and stochastic inputs , and both measured outputs  
and nonmeasured outputs .

The index vectors sensors and known specify which outputs  are measured 
and which inputs  are known. The resulting estimator est uses both  and 

 to produce the output and state estimates.
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estim handles both continuous- and discrete-time cases. You can use the 
functions place (pole placement) or kalman (Kalman filtering) to design an 
adequate estimator gain . Note that the estimator poles (eigenvalues of 

) should be faster than the plant dynamics (eigenvalues of ) to ensure 
accurate estimation.

Example Consider a state-space model sys with seven outputs and four inputs. Suppose 
you designed a Kalman gain matrix  using outputs 4, 7, and 1 of the plant as 
sensor measurements, and inputs 1,4, and 3 of the plant as known 
(deterministic) inputs. You can then form the Kalman estimator by

sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)

See the function kalman for direct Kalman estimator design.

See Also kalman Design Kalman estimator
place Pole placement
reg Form regulator given state-feedback and estimator 

gains
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1evalfrPurpose Evaluate frequency response at a single (complex) frequency

Syntax frsp = evalfr(sys,f)

Description frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK 
model sys at the complex number f. For state-space models with data 

, the result is

evalfr is a simplified version of freqresp meant for quick evaluation of the 
response at a single point. Use freqresp to compute the frequency response 
over a set of frequencies.

Example To evaluate the discrete-time transfer function

at , type

H = tf([1 -1],[1 1 1],-1)
z = 1+j
evalfr(H,z)

ans =
  2.3077e-01 +  1.5385e-01i

Limitations The response is not finite when f is a pole of sys.

See Also bode Bode frequency response
freqresp Frequency response over a set of frequencies
sigma Singular value response

A B C D, , ,( )

H f( ) D C fI A–( ) 1– B+=

H z( ) z 1–

z2 z 1+ +
------------------------=

z 1 j+=
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1feedbackPurpose Feedback connection of two LTI models

Syntax sys = feedback(sys1,sys2)
sys = feedback(sys1,sys2,sign)
sys = feedback(sys1,sys2,feedin,feedout,sign)

Description sys = feedback(sys1,sys2) returns an LTI model sys for the negative 
feedback interconnection.

The closed-loop model sys has  as input vector and  as output vector. The 
LTI models sys1 and sys2 must be both continuous or both discrete with 
identical sample times. Precedence rules are used to determine the resulting 
model type (see Precedence Rules). 

To apply positive feedback, use the syntax

sys = feedback(sys1,sys2,+1)

By default, feedback(sys1,sys2) assumes negative feedback and is 
equivalent to feedback(sys1,sys2,-1).

Finally, 

sys = feedback(sys1,sys2,feedin,feedout)

sys1

sys2

-

+
u y

u y
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computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys1 and specifies 
which inputs  are involved in the feedback loop. Similarly, feedout specifies 
which outputs  of sys1 are used for feedback. The resulting LTI model sys has 
the same inputs and outputs as sys1 (with their order preserved). As before, 
negative feedback is applied by default and you must use

sys = feedback(sys1,sys2,feedin,feedout,+1)

to apply positive feedback.

For more complicated feedback structures, use append and connect.

Remark You can specify static gains as regular matrices, for example,

sys = feedback(sys1,2)

However, at least one of the two arguments sys1 and sys2 should be an LTI 
object. For feedback loops involving two static gains k1 and k2, use the syntax

sys = feedback(tf(k1),k2)

sys1

sys2

-

+
u y

v z

sys

u
y
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Examples Example 1

To connect the plant

with the controller

using negative feedback, type

G = tf([2 5 1],[1 2 3],'inputname','torque',...
'outputname','velocity');

H = zpk(-2,-10,5)
Cloop = feedback(G,H)

and MATLAB returns

Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)
-----------------------------------
 (s+3.419) (s^2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules. 
Note that Cloop inherited the input and output names from G.

-

+
G

H

velocitytorque

G s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

H s( ) 5 s 2+( )
s 10+

--------------------=
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Example 2
Consider a state-space plant P with five inputs and four outputs and a 
state-space feedback controller K with three inputs and two outputs. To connect 
outputs 1, 3, and 4 of the plant to the controller inputs, and the controller 
outputs to inputs 4 and 2 of the plant, use

feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)

Example 3
You can form the following negative-feedback loops

by

Cloop = feedback(G,1) % left diagram
Cloop = feedback(1,G) % right diagram

Limitations The feedback connection should be free of algebraic loop. If  and  are the 
feedthrough matrices of sys1 and sys2, this condition is equivalent to:

•  nonsingular when using negative feedback

•  nonsingular when using positive feedback.

See Also series Series connection
parallel Parallel connection
connect Derive state-space model for block diagram 

interconnection

G

G

D1 D2

I D1D2+

I D1D2–
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1filtPurpose Specify discrete transfer functions in DSP format

Syntax sys = filt(num,den)
sys = filt(num,den,Ts)
sys = filt(M)

sys = filt(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = filt(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description In digital signal processing (DSP), it is customary to write transfer functions 
as rational expressions in  and to order the numerator and denominator 
terms in ascending powers of , for example,

The function filt is provided to facilitate the specification of transfer functions 
in DSP format.

sys = filt(num,den) creates a discrete-time transfer function sys with 
numerator(s) num and denominator(s) den. The sample time is left unspecified 
(sys.Ts = -1) and the output sys is a TF object.

sys = filt(num,den,Ts) further specifies the sample time Ts (in seconds).

sys = filt(M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value 
pairs of the form

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the 
input names or the transfer function variable. See LTI Properties and the set 
entry for additional information on LTI properties and admissible property 
values.

Arguments For SISO transfer functions, num and den are row vectors containing the 
numerator and denominator coefficients ordered in ascending powers of . 
For example, den = [1 0.4 2] represents the polynomial . 

z 1–

z 1–

H z 1–( ) 2 z 1–
+

1 0.4z 1– 2z 2–
+ +

---------------------------------------------=

z 1–

1 0.4z 1– 2z 2–
+ +
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MIMO transfer functions are regarded as arrays of SISO transfer functions 
(one per I/O channel), each of which is characterized by its numerator and 
denominator. The input arguments num and den are then cell arrays of row 
vectors such that:

• num and den have as many rows as outputs and as many columns as inputs.

• Their  entries num{i,j} and den{i,j} specify the numerator and 
denominator of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row 
vector representation of this common denominator. See also MIMO Transfer 
Function Models for alternative ways to specify MIMO transfer functions.

Remark filt behaves as tf with the Variable property set to 'z^-1' or 'q'. See tf 
entry below for details.

Example Typing the commands

num = {1 , [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den,'inputname',{'channel1' 'channel2'})

creates the two-input digital filter

with unspecified sample time and input names 'channel1' and 'channel2'.

See Also tf Create transfer functions
zpk Create zero-pole-gain models
ss Create state-space models

i j,( )

H z 1–( ) 1

1 z 1– 2z 2–
+ +

------------------------------------      1 0.3z 1–
+

5 2z 1–
+
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1frdPurpose Create a frequency response data (FRD) object or convert another model type 
to an FRD model

Syntax sys = frd(response,frequency)
sys = frd(response,frequency,Ts)
sys = frd
sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency)
sysfrd = frd(sys,frequency,'Units',units)

Description sys = frd(response,frequency) creates an FRD model sys from the 
frequency response data stored in the multidimensional array response. The 
vector frequency represents the underlying frequencies for the frequency 
response data. See Table 1-1, Data Format for the Argument response in FRD 
Models.

sys = frd(response,frequency,Ts) creates a discrete-time FRD model sys 
with scalar sample time Ts. Set Ts = -1 to create a discrete-time FRD model 
without specifying the sample time.

sys = frd creates an empty FRD model.

The input argument list for any of these syntaxes can be followed by property 
name/property value pairs of the form

'PropertyName',PropertyValue

You can use these extra arguments to set the various properties of FRD models 
(see the set command, or LTI Properties and Model-Specific Properties). These 
properties include 'Units'. The default units for FRD models are in 'rad/s'.

To force an FRD model sys to inherit all of its generic LTI properties from any 
existing LTI model refsys, use the syntax 

sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency) converts a TF, SS, or ZPK model to an FRD 
model. The frequency response is computed at the frequencies provided by the 
vector frequency.
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sysfrd = frd(sys,frequency,'Units',units)converts an FRD model from a 
TF, SS, or ZPK model while specifying the units for frequency to be units 
('rad/s' or 'Hz').

Arguments When you specify a SISO or MIMO FRD model, or an array of FRD models, the 
input argument frequency is always a vector of length Nf, where Nf is the 
number of frequency data points in the FRD. The specification of the input 
argument response is summarized in the following table.

Remarks See Frequency Response Data (FRD) Models for more information on single 
FRD models, and Creating LTI Models for information on building arrays of 
FRD models.

Example Type the commands

freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)

to create a SISO FRD model.

See Also chgunits Change units for an FRD model
frdata Quick access to data for an FRD model
set Set the properties for an LTI model
ss Create state-space models

Table 1-1:  Data Format for the Argument response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the 
frequency response at the frequency frequency(i)

MIMO model 
with Ny outputs 
and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which 
response(i,j,k) specifies the frequency response 
from input j to output i at frequency frequency(k)

S1-by-...-by-Sn 
array of models 
with Ny outputs 
and Nu inputs

Multidimensional array of size [Ny Nu S1 ... Sn] for 
which response(i,j,k,:) specifies the array of 
frequency response data from input j to output i at 
frequency frequency(k)
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tf Create transfer functions
zpk Create zero-pole-gain models
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1frdataPurpose Quick access to data for a frequency response data object

Syntax [response,freq] = frdata(sys)
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys,'v')

Description [response,freq] = frdata(sys) returns the response data and frequency 
samples of the FRD model sys. For an FRD model with Ny outputs and Nu 
inputs at Nf frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j) 
entry specifies the response from input j to output i. 

• freq is a column vector of length Nf that contains the frequency samples of 
the FRD model. 

See Table 11-14, “Data Format for the Argument response in FRD Models,” on 
page 80 for more information on the data format for FRD response data.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data and frequencies directly as column 
vectors rather than as cell arrays (see example below).

[response,freq,Ts] = frdata(sys) also returns the sample time Ts. 

Other properties of sys can be accessed with get or by direct structure-like 
referencing (e.g., sys.Units).

Arguments The input argument sys to frdata must be an FRD model.

Example Typing the commands

freq = logspace(1,2,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq);
[resp,freq] = frdata(sys,'v')

returns the FRD model data

resp = 
0.2040 + 0.4565i
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   2.4359 - 4.3665i

freq =
    10
   100

See Also frd Create or convert to FRD models
get Get the properties for an LTI model
set Set model properties
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1freqrespPurpose Compute frequency response over grid of frequencies

Syntax H = freqresp(sys,w)

Description H = freqresp(sys,w) computes the frequency response of the LTI model sys 
at the real frequency points specified by the vector w. The frequencies must be 
in radians/sec. For single LTI Models, freqresp(sys,w) returns a 3-D array H 
with the frequency as the last dimension (see “Arguments” below). For LTI 
arrays of size [Ny Nu S1 ... Sn], freqresp(sys,w) returns a 
[Ny-by-Nu-by-S1-by-...-by-Sn] length (w) array.

In continuous time, the response at a frequency ω is the transfer function value 
at . For state-space models, this value is given by

In discrete time, the real frequencies w(1),..., w(N) are mapped to points on the 
unit circle using the transformation 

where  is the sample time. The transfer function is then evaluated at the 
resulting  values. The default  is used for models with unspecified 
sample time.

Remark If sys is an FRD model, freqresp(sys,w), w can only include frequencies in 
sys.frequency. Interpolation and extrapolation are not supported. To 
interpolate an FRD model, use interp.

Arguments The output argument H is a 3-D array with dimensions

 

For SISO systems, H(1,1,k) gives the scalar response at the frequency w(k). 
For MIMO systems, the frequency response at w(k) is H(:,:,k), a matrix with 
as many rows as outputs and as many columns as inputs.

Example Compute the frequency response of 

s jω=

H jω( ) D C jωI A–( ) 1– B+=

z e
jωTs=

Ts
z Ts 1=

number of outputs( ) number of inputs( )× length of w( )×
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at the frequencies . Type

w = [1 10 100]
H = freqresp(P,w)

H(:,:,1) =
 
        0            0.5000- 0.5000i
  -0.2000+ 0.6000i   1.0000         
 
 
H(:,:,2) =
 
        0            0.0099- 0.0990i
   0.9423+ 0.2885i   1.0000         
 
 
H(:,:,3) =
 
        0            0.0001- 0.0100i
   0.9994+ 0.0300i   1.0000 

The three displayed matrices are the values of  for

The third index in the 3-D array H is relative to the frequency vector w, so you 
can extract the frequency response at  rad/sec by

H(:,:,w==10)

ans =
        0            0.0099- 0.0990i
   0.9423+ 0.2885i   1.0000 

P s( )
0 1

s 1+
------------

s 1–
s 2+
------------ 1

=

ω 1 10 100, ,=

P jω( )

ω 1,= ω 10,= ω 100=

ω 10=
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Algorithm For transfer functions or zero-pole-gain models, freqresp evaluates the 
numerator(s) and denominator(s) at the specified frequency points. For 
continuous-time state-space models , the frequency response is

For efficiency,  is reduced to upper Hessenberg form and the linear 
equation  is solved at each frequency point, taking advantage 
of the Hessenberg structure. The reduction to Hessenberg form provides a good 
compromise between efficiency and reliability. See [1] for more details on this 
technique.

Diagnostics If the system has a pole on the  axis (or unit circle in the discrete-time case) 
and w happens to contain this frequency point, the gain is infinite,  is 
singular, and freqresp produces the following warning message.

Singularity in freq. response due to jw-axis or unit circle pole.

References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,” 
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also evalfr Response at single complex frequency
bode Bode plot
nyquist Nyquist plot
nichols Nichols plot
sigma Singular value plot
ltiview LTI system viewer
interp Interpolate FRD model between frequency points

A B C D, , ,( )

D C jω A–( ) 1– B ,+ ω ω1 ... ωN, ,=

A
jω A–( )X B=

jω
jωI A–
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1gcarePurpose Generalized solver for continuous-time algebraic Riccati equations

Syntax [X,L,report] = gcare(H,J,ns) 
[X1,X2,D,L] = gcare(H,...,'factor')

Description [X,L,report] = gcare(H,J,ns) computes the unique stabilizing solution X of 
the continuous-time algebraic Riccati equation associated with a Hamiltonian 
pencil of the form 

The optional input ns is the row size of the A matrix. Default values for J and 
ns correspond to E=I and R=[]. 

Optionally, gcare returns the vector L of closed-loop eigenvalues and a 
diagnosis report with value:

• −1 if the Hamiltonian pencil has jw-axis eigenvalues

• −2 if there is no finite stabilizing solution X

• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist. 

[X1,X2,D,L] = gcare(H,...,'factor') returns two matrices X1, X2 and a 
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains 
the closed-loop eigenvalues. All outputs are empty when the associated 
Hamiltonian matrix has eigenvalues on the imaginary axis.

    See Also care Solver for continuous-time algebraic Riccati equations
gdare Generalized solver for discrete-time algebraic Riccati 

equations

H tJ–
A F S1
G A'– S2–

S2' S1' R

E 0 0
0 E' 0
0 0 0

–=
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1gdarePurpose Generalized solver for discrete-time algebraic Riccati equations.

Syntax [X,L,report] = gdare(H,J,ns)
[X1,X2,D,L] = gdare(H,J,NS,'factor')

Description [X,L,report] = gdare(H,J,ns) computes the unique stabilizing solution X of 
the discrete-time algebraic Riccati equation associated with a Symplectic 
pencil of the form

The third input ns is the row size of the A matrix. 

Optionally, gdare returns the vector L of closed-loop eigenvalues and a 
diagnosis report with value:

• −1 if the Symplectic pencil has eigenvalues on the unit circle

• −2 if there is no finite stabilizing solution X

• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gdare(H,J,NS,'factor') returns two matrices X1, X2 and a 
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains 
the closed-loop eigenvalues. All outputs are empty when the Symplectic pencil 
has eigenvalues on the unit circle.

See Also dare Solver for discrete-time algebraic Riccati equations
gcare Generalized solver for continuous-time algebraic 

Riccati equations

H tJ–
A F B
Q– E' S–

S' 0 R

E 0 0
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1gensigPurpose Generate test input signals for lsim

Syntax [u,t] = gensig(type,tau)
[u,t] = gensig(type,tau,Tf,Ts)

Description [u,t] = gensig(type,tau) generates a scalar signal u of class type and with 
period tau (in seconds). The following types of signals are available.

gensig returns a vector t of time samples and the vector u of signal values at 
these samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the 
signal and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to lsim and simulate the response of 
a single-input linear system to the specified signal. Since t is uniquely 
determined by Tf and Ts, you can also generate inputs for multi-input systems 
by repeated calls to gensig.

Example Generate a square wave with period 5 seconds, duration 30 seconds, and 
sampling every 0.1 second.

[u,t] = gensig('square',5,30,0.1)

Plot the resulting signal.

plot(t,u)

'sin' Sine wave.

'square' Square wave.

'pulse' Periodic pulse.
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axis([0 30 -1 2])

See Also lsim Simulate response to arbitrary inputs
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1getPurpose Access/query LTI property values

Syntax Value = get(sys,'PropertyName')
get(sys)
Struct = get(sys)

Description Value = get(sys,'PropertyName') returns the current value of the property 
PropertyName of the LTI model sys. The string 'PropertyName' can be the full 
property name (for example, 'UserData') or any unambiguous case-insensitive 
abbreviation (for example, 'user'). You can specify any generic LTI property, 
or any property specific to the model sys (see “LTI Properties” for details on 
generic and model-specific LTI properties).

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard 
MATLAB structure with the property names as field names and the property 
values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Example Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

You can display all LTI properties of h with

get(h)
num = {[0 1]}
den = {[1 2]}

        Variable = 'z'
        Ts = 0.1
        InputDelay = 0
        OutputDelay = 0
        ioDelay = 0
        InputName = {'voltage'}
        OutputName = {''}
        InputGroup = {0x2 cell}
        OutputGroup = {0x2 cell}
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        Notes = {}
        UserData = 'hello'

or query only about the numerator and sample time values by

get(h,'num')

ans = 
    [1x2 double]

and

get(h,'ts')

ans =
    0.1000

Because the numerator data (num property) is always stored as a cell array, the 
first command evaluates to a cell array containing the row vector [0 1].

Remark An alternative to the syntax 

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

For example,

sys.Ts
sys.a
sys.user

return the values of the sample time,  matrix, and UserData property of the 
(state-space) model sys.

See Also frdata Quick access to frequency response data
set Set/modify LTI properties
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A
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1getoptionsPurpose Return @PlotOptions handles or plot options property

Syntax p = getoptions(h)
p = getoptions(h,propertyname)

Description p = getoptions(h) returns the plot options handle associated with plot handle 
h. p contains all the settable options for a given response plot.

p = getoptions(h,propertyname) returns the specified options property, 
propertyname, for the plot with handle h. You can use this to interrogate a plot 
handle. For example,

p = getoptions(h,'Grid') 

returns 'on' if a grid is visible, and 'off' when it is not.

See Also setoptions Set plot options for response plots
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1gramPurpose Compute controllability and observability grammians

Syntax Wc = gram(sys,'c')
Wo = gram(sys,'o')

Description gram calculates controllability and observability grammians. You can use 
grammians to study the controllability and observability properties of 
state-space models and for model reduction [1,2]. They have better numerical 
properties than the controllability and observability matrices formed by ctrb 
and obsv.

Given the continuous-time state-space model

the controllability grammian is defined by

and the observability grammian by

The discrete-time counterparts are

The controllability grammian is positive definite if and only if  is 
controllable. Similarly, the observability grammian is positive definite if and 
only if  is observable.

Use the commands 

Wc = gram(sys,'c') % controllability grammian
Wo = gram(sys,'o') % observability grammian

x· Ax Bu+=

y Cx Du+=

Wc eAτBBTeATτ τd
0

∞

∫=

Wo eATτCTCeAτ τd
0

∞

∫=

Wc AkBBT AT( )
k
 ,

k 0=

∞

∑= Wo AT( )
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to compute the grammians of a continuous or discrete system. The LTI model 
sys must be in state-space form.

Algorithm The controllability grammian  is obtained by solving the continuous-time 
Lyapunov equation

or its discrete-time counterpart

Similarly, the observability grammian  solves the Lyapunov equation

in continuous time, and the Lyapunov equation

in discrete time.

Limitations The  matrix must be stable (all eigenvalues have negative real part in 
continuous time, and magnitude strictly less than one in discrete time).

References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980.

See Also balreal Grammian-based balancing of state-space realizations
ctrb Controllability matrix
lyap, dlyap Lyapunov equation solvers
obsv Observability matrix

Wc

AWc WcAT BBT
+ + 0=

AWcAT Wc– BBT
+ 0=

Wo

ATWo WoA CTC+ + 0=

ATWoA Wo– CTC+ 0=

A
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1hasdelayPurpose Test if an LTI model has time delays

Syntax hasdelay(sys)

Description hasdelay(sys) returns 1 (true) if the LTI model sys has input delays, output 
delays, or I/O delays, and 0 (false) otherwise.

See Also delay2z Changes transfer functions of discrete-time LTI models 
with delays to rational functions or absorbs FRD delays 
into the frequency response phase information

totaldelay Combines delays for an LTI model
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1hsvdPurpose Computes the Hankel singular values of an LTI model

Syntax hsv = hsvd(sys)
hsvd(sys)
[hsv,baldata] = hsvd(sys)

Description hsv = hsvd(sys) computes the Hankel singular values hsv of the LTI model 
sys. In state coordinates that equalize the input-to-state and state-to-output 
energy transfers, the Hankel singular values measure the contribution of each 
state to the input/output behavior. Hankel singular values are to model order 
what singular values are to matrix rank. In particular, small Hankel singular 
values signal states that can be discarded to simplify the model (see balred).

For models with unstable poles, hsvd only computes the Hankel singular 
values of the stable part and entries of hsv corresponding to unstable modes 
are set to Inf. Use

hsv = hsvd(sys,'AbsTol',ATOL,...
'RelTol',RTOL,'Offset',ALPHA)

to specify additional options for the stable/unstable decomposition, see STABSEP 
for details. The default values are ATOL=0, RTOL=1e-8, and ALPHA=1e-8.

hsvd(sys) displays a plot of the Hankel singular values. 

[hsv,baldata] = hsvd(sys) returns additional data to speed up model order 
reduction with balred. For example

sys = rss(20);  % 20-th order model
[hsv,baldata] = hsvd(sys);
rsys = balred(sys,8:10,'Balancing',baldata);
bode(sys,'b',rsys,'r--')

computes 3 approximations of sys of orders 8, 9, 10.

There is more than one hsvd available. Type

help lti/hsvd

for more information.

Algorithm The AbsTol, RelTol, and ALPHA parameters are only used for models with 
unstable or marginally stable dynamics.  Because Hankel singular values are 
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only meaningful for stable dynamics, hsvd must first splitsuch models into the 
sum of their stable and unstable parts:

   G = G_s + G_ns

This decomposition can be tricky when the model has modes close to the 
stability boundary (e.g., a pole at s=-1e-10), or clusters of modes on the 
stability boundary (e.g., double or triple integrators).While hsvd is able to 
overcome these difficulties in most cases, it sometimes produces unexpected 
results such as

1 Large Hankel singular values for the stable part. 

This happens when the stable part G_s contains some poles very close to the 
stability boundary. To force such modes into the unstable group, increase 
the 'Offset' option to slightly grow the unstable region.

2 Too many modes are labeled "unstable." For example, you see 5 red bars in 
the HSV plot when your model had only 2 unstable poles.

The stable/unstable decomposition algorithm has built-in accuracy checks 
that reject decompositions causing a significant loss of accuracy in the 
frequency response. Such loss of accuracy  arises, e.g., when trying to split a 
cluster of stable and unstable modes near s=0. Because such clusters are 
numerically equivalent to a multiple pole at s=0, it is actually desirable to 
treat the whole cluster as unstable. In some cases, however, large relative 
errors in low-gain frequency bands can trip the accuracy checks and lead to 
a rejection of valid decompositions. Additional modes are then absorbed into 
the unstable part G_ns, unduly increasing its order. 

Such issues can be easily corrected by adjusting the AbsTol and RelTol 
tolerances.  By setting AbsTol to a fraction of smallest gain of interest in 
your model, you tell the algorithm to ignore errors below a certain gain 
threshold.  By increasing RelTol, you tell the algorithm to sacrifice some 
relative model accuracy in exchange for keeping more modes in the stable 
part G_s.

Examples These examples illustrate the use of AbsTol and offset. 

Example 1: Large Hankel singular values for the stable part. 
First, create a system with a stable pole very near to 0, then calculate the 
Hankel singular values.
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sys = zpk([1 2],[-1 -2 -3 -10 -1e-7],1)
hsvd(sys) 

Zero/pole/gain:
            (s-1) (s-2)
-----------------------------------
(s+1) (s+2) (s+3) (s+10) (s+1e-007)

Notice the dominant Hankel singular value with 1e5 magnitude, due to the 
mode s=-1e-7 near the imaginary axis. Set the offset=1e-6 to treat this mode 
as unstable

hsvd(sys,'Offset',1e-7)

Zero/pole/gain:

            (s-1) (s-2)
-----------------------------------
(s+1) (s+2) (s+3) (s+10) (s+1e-007)
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The dominant Hankel singular value is now shown as unstable.

Example 2: Too many modes are labeled as unstable. 
Create a system with three unstable modes. Then calculate the Hankel 
singular values.

sys = zpk([1 -1],[-1e-2,1e3,-1,-1,1,-2,0,10*i-1,-10*i-1],1);
esort(pole(sys))

ans =

1.0000e+003              
1.0000e+000              

0              
-1.0000e-002              
-1.0000e+000              
-1.0000e+000              
-1.0000e+000 +1.0000e+001i
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-1.0000e+000 -1.0000e+001i
-2.0000e+000 

There are 3 unstable modes, but there are 7 “unstable” Hankel singular values 
on the plot.

hsvd(sys)

Note the low gain of -400 dB near to pole s=1e3 (w=1e3 rad/s). Try increasing 
the absolute tolerance to AbsTol = 1e-16 (= -320 dB).

hsvd(sys,'AbsTol',1e-16)
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This fixed the problem, as this figure shows.

There are now only three unstable modes, the corrrect number for the system 
sys.

See Also balred Model order reduction
balreal Gramian-based balancing of state-space realizations
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1hsvplotPurpose Plot the Hankel singular values and return the plot handle

Syntax h = hsvplot(sys);

h = hsvplot(sys, 'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)
h = hsvplot(AX,sys,...)

Description h = hsvplot(sys) plots the Hankel singular values of an LTI system sys and 
returns the plot handle h. You can use this handle to customize the plot with 
the getoptions and setoptions commands. Type

help hsvoptions 

for a list of available plot options.

hsvplot(sys) plots the Hankel singular values of the LTI model sys. See hsvd 
for details on the meaning and purpose of Hankel singular values. The Hankel 
singular values for the stable and unstable modes of sys are shown in blue and 
red, respectively.

hsvplot(sys, AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA) specifies 
additional options for computing the Hankel singular values.

hsvplot(AX,sys,...) attaches the plot to the axes with handle AX.

Example Use the plot handle to change plot options in the Hankel singular values plot.

sys = rss(20);
h = hsvplot(sys,'AbsTol',1e-6);
% Switch to log scale and modify Offset parameter
setoptions(h,'Yscale','log','Offset',0.3)

See Also getoptions Get plot options
hsvd Plot Hankel singular values (does not return the 

handle)
setoptions Set plot options
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1impulsePurpose Compute the impulse response of LTI models

Syntax impulse(sys)
impulse(sys,t)

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,t)
impulse(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = impulse(sys)

Description impulse calculates the unit impulse response of a linear system. The impulse 
response is the response to a Dirac input  for continuous-time systems and 
to a unit pulse at  for discrete-time systems. Zero initial state is assumed 
in the state-space case. When invoked without left-hand arguments, this 
function plots the impulse response on the screen.

impulse(sys) plots the impulse response of an arbitrary LTI model sys. This 
model can be continuous or discrete, and SISO or MIMO. The impulse response 
of multi-input systems is the collection of impulse responses for each input 
channel. The duration of simulation is determined automatically to display the 
transient behavior of the response.

impulse(sys,t) sets the simulation horizon explicitly. You can specify either 
a final time t = Tfinal (in seconds), or a vector of evenly spaced time samples 
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For 
continuous systems, dt becomes the sample time of the discretized simulation 
model (see “Algorithm”), so make sure to choose dt small enough to capture 
transient phenomena.

To plot the impulse responses of several LTI models sys1,..., sysN on a single 
figure, use

impulse(sys1,sys2,...,sysN) 
impulse(sys1,sys2,...,sysN,t) 

δ t( )
t 0=
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As with bode or plot, you can specify a particular color, linestyle, and/or 
marker for each system, for example,

impulse(sys1,'y:',sys2,'g--')

See “Plotting and Comparing Multiple Systems” and the bode entry in this 
section for more details.

When invoked with left-side arguments,

[y,t] = impulse(sys)
[y,t,x] = impulse(sys) % for state-space models only
y = impulse(sys,t)

return the output response y, the time vector t used for simulation, and the 
state trajectories x (for state-space models only). No plot is drawn on the 
screen. For single-input systems, y has as many rows as time samples (length 
of t), and as many columns as outputs. In the multi-input case, the impulse 
responses of each input channel are stacked up along the third dimension of y. 
The dimensions of y are then

and y(:,:,j) gives the response to an impulse disturbance entering the jth 
input channel. Similarly, the dimensions of x are

Example To plot the impulse response of the second-order state-space model

use the following commands.

a = [-0.5572 -0.7814;0.7814  0];
b = [1 -1;0 2];
c = [1.9691  6.4493];

length of t( ) number of outputs( ) number of inputs( )××

length of t( ) number of states( ) number of inputs( )××

x·1

x·2

0.5572  – 0.7814–

0.7814 0

x1

x2

1   1–

0    2

u1

u2

+=

y 1.9691  6.4493
x1

x2

=
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sys = ss(a,b,c,0);
impulse(sys)

The left plot shows the impulse response of the first input channel, and the 
right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by

[y,t] = impulse(sys)

Because this system has two inputs, y is a 3-D array with dimensions

size(y)

ans =
   101     1     2

(the first dimension is the length of t). The impulse response of the first input 
channel is then accessed by

y(:,:,1)
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Algorithm Continuous-time models are first converted to state space. The impulse 
response of a single-input state-space model 

 

is equivalent to the following unforced response with initial state .

To simulate this response, the system is discretized using zero-order hold on 
the inputs. The sampling period is chosen automatically based on the system 
dynamics, except when a time vector t = 0:dt:Tf is supplied (dt is then used 
as sampling period).

Limitations The impulse response of a continuous system with nonzero  matrix is infinite 
at . impulse ignores this discontinuity and returns the lower continuity 
value  at .

See Also ltiview LTI system viewer
step Step response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs

x· Ax bu+=

y Cx=

b

x· Ax ,= x 0( ) b=

y Cx=

D
t 0=

Cb t 0=
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1impulseplotPurpose Compute the impulse response and return the plot handle

Syntax h = impulseplot(sys)

h = impulseplot(sys,Tfinal)
h = impulseplot(sys,t)
h = impulseplot(sys1,sys2,...,t)
h = impulseplot(AX,...)
h = impulseplot(..., plotoptions) 

Description h = impulseplot(sys) plots the impulse response of the LTI model sys 
(created with either tf, zpk, or ss). For multiinput models, independent 
impulse commands are applied to each input channel. The time range and 
number of points are chosen automatically. For continuous systems with direct 
feedthrough, the infinite pulse at t=0 is disregarded. impulseplot also returns 
the plot handle, h. You can use this handle to customize the plot with the 
getoptions and setoptions commands. Type

help timeoptions 

for a list of available plot options.

impulseplot(sys) plots the impulse response of the LTI model without 
returning the plot handle.

impulseplot(sys,Tfinal) simulates the impulse response from t=0 to the 
final time t=Tfinal. For discrete-time systems with unspecified sampling 
time, Tfinal is interpreted as the number of samples.

impulseplot(sys,t) uses the user-supplied time vector t for simulation. For 
discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample 
time. For continuous-time models, t should be of the form Ti:dt:Tf, where dt 
becomes the sample time of a discrete approximation to the continuous system. 
The impulse is always assumed to arise at t=0 (regardless of Ti). 

impulseplot(sys1,sys2,...,t) plots the impulse response of multiple LTI 
models sys1,sys2,... on a single plot. The time vector t is optional. You can also 
specify a color, line style, and marker for each system, as in 

impulseplot(sys1,'r',sys2,'y--',sys3,'gx')
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impulseplot(AX,...) plots into the axes with handle AX.

impulseplot(..., plotoptions) plots the impulse response with the options 
specified in plotoptions. Type 

help timeoptions 

for more detail.

Example Normalize the impulse response of a third-order system.

sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');

See Also getoptions Get plot options
impulse Plot impulse responses
setoptions Set plot options



initial

1-120

1initialPurpose Compute the initial condition response of state-space models

Syntax initial(sys,x0)
initial(sys,x0,t)

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)
initial(sys1,'PlotStyle1',...,sysN,'PlotStyleN',x0)

[y,t,x] = initial(sys,x0)

Description initial calculates the unforced response of a state-space model with an initial 
condition on the states.

This function is applicable to either continuous- or discrete-time models. When 
invoked without left-side arguments, initial plots the initial condition 
response on the screen.

initial(sys,x0) plots the response of sys to an initial condition x0 on the 
states. sys can be any state-space model (continuous or discrete, SISO or 
MIMO, with or without inputs). The duration of simulation is determined 
automatically to reflect adequately the response transients.

initial(sys,x0,t) explicitly sets the simulation horizon. You can specify 
either a final time t = Tfinal (in seconds), or a vector of evenly spaced time 
samples of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For 
continuous systems, dt becomes the sample time of the discretized simulation 
model (see impulse), so make sure to choose dt small enough to capture 
transient phenomena.

To plot the initial condition responses of several LTI models on a single figure, 
use

x· Ax ,= x 0( ) x0=

y Cx=
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initial(sys1,sys2,...,sysN,x0) 
initial(sys1,sys2,...,sysN,x0,t) 

(see impulse for details).

When invoked with left-side arguments,

[y,t,x] = initial(sys,x0)
[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the 
state trajectories x. No plot is drawn on the screen. The array y has as many 
rows as time samples (length of t) and as many columns as outputs. Similarly, 
x has length(t) rows and as many columns as states.

Example Plot the response of the state-space model

to the initial condition

a = [-0.5572   -0.7814;0.7814  0];
c = [1.9691  6.4493];
x0 = [1 ; 0]

sys = ss(a,[],c,[]);

x·1

x·2

0.5572 – 0.7814–

0.7814 0

x1

x2

=

y 1.9691  6.4493
x1

x2

=

x 0( ) 1
0

=
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initial(sys,x0)

See Also impulse Impulse response
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer
step Step response
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1initialplotPurpose Compute initial condition responses and return plot handles

Syntax h = initialplot(sys, x0)

h = initialplot(sys,x0,Tfinal)
h = initialplot(sys,x0,t)
h = initialplot(sys1,sys2,...,x0,t)
h = initialplot(AX,...)
h = initialplot(..., plotoptions)

Description initialplot(sys,x0) plots the undriven response of the state-space model 
sys (created with ss) with initial condition x0 on the states. This response is 
characterized by these equations:

      Continuous time:   x = A x, y = C x, x(0) = x0 

      Discrete time: x[k+1] = A x[k], y[k] = C x[k], x[0] = x0

The time range and number of points are chosen automatically. initialplot 
also returns the plot handle h. You can use this handle to customize the plot 
with the getoptions and setoptions commands. Type

help timeoptions 

for a list of available plot options.

initialplot(sys,x0,Tfinal) simulates the time response from t=0 to the 
final time t=Tfinal. For discrete-time models with unspecified sample time, 
Tfinal should be the number of samples.

initialplot(sys,x0,t) specifies a time vector t to be used for simulation. For 
discrete systems, t should be of the form 0:Ts:Tf, where Ts is the sample 
time. For continuous-time models, t should be of the form 0:dt:Tf, where dt 
becomes the sample time of a discrete approximation of the continuous model.

initialplot(sys1,sys2,...,x0,t) plots the response of multiple LTI models 
sys1,sys2,... on a single plot. The time vector t is optional. You can also specify 
a color, line style, and marker for each system, as in 

initialplot(sys1,'r',sys2,'y--',sys3,'gx',x0).

initialplot(AX,...) plots into the axes with handle AX.
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initialplot(..., plotoptions) plots the initial condition response with the 
options specified in plotoptions. Type

help timeoptions

for more detail.

Example Plot a third-order system’s response to initial conditions and use the plot 
handle to change the plot’s title.

sys = rss(3);
h = initialplot(sys,[1,1,1])
p = getoptions(h); % Get options for plot.
p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to the plot.

See Also getoptions Get plot options
initial Plot response to initial conditions
setoptions Set plot options
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1interpPurpose Interpolate an FRD model between frequency points

Syntax isys = interp(sys,freqs) interpolates the frequency response data 
contained in the FRD model sys at the frequencies freqs. interp, which is an 
overloaded version of the MATLAB function interp, uses linear interpolation 
and returns an FRD model isys containing the interpolated data at the new 
frequencies freqs.

You should express the frequency values freqs in the same units as 
sys.frequency. The frequency values must lie between the smallest and 
largest frequency points in sys (extrapolation is not supported). 

See Also freqresp Frequency response of LTI models
ltimodels Help on LTI models
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1invPurpose Invert LTI systems

Syntax isys = inv(sys)

Description inv inverts the input/output relation

to produce the LTI system with the transfer matrix .

This operation is defined only for square systems (same number of inputs and 
outputs) with an invertible feedthrough matrix . inv handles both 
continuous- and discrete-time systems.

Example Consider

At the MATLAB prompt, type

H = [1 tf(1,[1 1]);0 1]
Hi = inv(H)

to invert it. MATLAB returns

Transfer function from input 1 to output...
 #1:  1
 
 #2:  0
 
Transfer function from input 2 to output...
       -1
 #1:  -----
      s + 1
 
 #2:  1

You can verify that

y G s( )u=

H s( ) G s( ) 1–
=

u H s( )y=

D

H s( ) 1   1
s 1+
------------

0   1

=
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H * Hi

is the identity transfer function (static gain I).

Limitations Do not use inv to model feedback connections such as

While it seems reasonable to evaluate the corresponding closed-loop transfer 
function  as

inv(1+g*h) * g

this typically leads to nonminimal closed-loop models. For example, 

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

yields a third-order closed-loop model with an unstable pole-zero cancellation 
at s = 1.

cloop

Zero/pole/gain:
      s (s-1)
-------------------
(s-1) (s^2 + s + 1)

Use feedback to avoid such pitfalls.

cloop = feedback(g,h)

Zero/pole/gain:
      s
-------------
(s^2 + s + 1)

-

+
G

H

I GH+( ) 1– G
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1iopzmapPurpose Plot pole-zero maps for I/O pairs of LTI models

Syntax iopzmap(sys)
iopzmap(sys1,sys2,...)

Description iopzmap(sys) computes and plots the poles and zeros of each input/output pair 
of the LTI model sys. The poles are plotted as x’s and the zeros are plotted as 
o’s. 

iopzmap(sys1,sys2,...) shows the poles and zeros of multiple LTI models 
sys1,sys2,... on a single plot. You can specify distinctive colors for each model, 
as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping 
ratio and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzmap plots the poles and zeros o each model 
in the array on the same diagram.

Example Create a one-input, two-output system and plot pole-zero maps for I/O pairs.

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];
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iopzmap(H) 

See Also pzmap Pole-zero map
pole Compute system poles
zero Compute system zeros
sgrid Grid for s-plane plots
zgrid Grid for z-plane plots
ltimodels Information about LTI models
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1iopzplotPurpose Plot pole-zero maps for I/O pairs and return the plot handle

Syntax h = iopzplot(sys)

h = iopzplot(sys1,sys2,...) 
h = iopzplot(AX,...)
h = iopzplot(..., plotoptions)

Description h = iopzplot(sys) computes and plots the poles and zeros of each input/
output pair of the LTI model SYS. The poles are plotted as x's and the zeros are 
plotted as o's. It also returns the plot handle h. You can use this handle to 
customize the plot with the getoptions and setoptions commands. Type

help pzoptions 

for a list of available plot options. 

iopzplot(sys1,sys2,...) shows the poles and zeros of multiple LTI models 
SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model, 
as in 

iopzplot(sys1,'r',sys2,'y',sys3,'g')

iopzplot(AX,...) plots into the axes with handle AX.

iopzplot(..., plotoptions) plots the poles and zeros with the options 
specified in plotoptions. Type 

help pzoptions 

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio 
and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzplot plots the poles and zeros of each model 
in the array on the same diagram.

    Example Use the plot handle to change the I/O grouping of a pole/zero map.

sys = rss(3,2,2);
h = iopzplot(sys);
% View all input-output pairs on a single axis.
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setoptions(h,'IOGrouping','all')

See Also getoptions Get plot options
iopzmap Plot a pole/zero map of I/O pairs
setoptions Set plot options
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1isct, isdtPurpose Determine whether an LTI model is continuous or discrete

Syntax boo = isct(sys)
boo = isdt(sys)

Description boo = isct(sys) returns 1 (true) if the LTI model sys is continuous and 0 
(false) otherwise. sys is continuous if its sample time is zero, that is, sys.Ts=0.

boo = isdt(sys) returns 1 (true) if sys is discrete and 0 (false) otherwise. 
Discrete-time LTI models have a nonzero sample time, except for empty models 
and static gains, which are regarded as either continuous or discrete as long as 
their sample time is not explicitly set to a nonzero value. Thus both

isct(tf(10))
isdt(tf(10)) 

are true. However, if you explicitly label a gain as discrete, for example, by 
typing

g = tf(10,'ts',0.01)

isct(g) now returns false and only isdt(g) is true.

See Also isa Determine LTI model type
isempty True for empty LTI models
isproper True for proper LTI models
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1isemptyPurpose Test if an LTI model is empty

Syntax boo = isempty(sys)

Description isempty(sys) returns 1 (true) if the LTI model sys has no input or no output, 
and 0 (false) otherwise.

Example Both commands

isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[],[]))

return 1 (true) while

isempty(ss(1,2,3,4))

returns 0 (false).

See Also issiso True for SISO systems
size I/O dimensions and array dimensions of LTI models
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1isproperPurpose Test if an LTI model is proper

Syntax boo = isproper(sys)

Description isproper(sys) returns 1 (true) if the LTI model sys is proper and 0 (false) 
otherwise.

State-space models are always proper. SISO transfer functions or 
zero-pole-gain models are proper if the degree of their numerator is less than 
or equal to the degree of their denominator. MIMO transfer functions are 
proper if all their SISO entries are proper.

Example The following commands

isproper(tf([1 0],1))  % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

return false and true, respectively.
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1issisoPurpose Test if an LTI model is single-input/single-output (SISO)

Syntax boo = issiso(sys)

Description issiso(sys) returns 1 (true) if the LTI model sys is SISO and 0 (false) 
otherwise.

See Also isempty True for empty LTI models
size I/O dimensions and array dimensions of LTI models
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1kalmanPurpose Design continuous- or discrete-time Kalman estimator

Syntax [kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn) % discrete time only
[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)

Description kalman designs a Kalman state estimator given a state-space model of the 
plant and the process and measurement noise covariance data. The Kalman 
estimator is the optimal solution to the following continuous or discrete 
estimation problems.

Continuous-Time Estimation

Given the continuous plant

with known inputs  and process and measurement white noise  
satisfying

construct a state estimate  that minimizes the steady-state error 
covariance

The optimal solution is the Kalman filter with equations

where the filter gain  is determined by solving an algebraic Riccati equation. 
This estimator uses the known inputs  and the measurements  to generate 

x· Ax Bu Gw+ +=        (state equation)
yv Cx Du Hw v+ + +=        (measurement equation)

u w v,

E w( ) E v( ) 0 ,     E wwT( ) Q ,    = E vvT( ) R=  ,   E wvT( ) N== =

x̂ t( )

P E x x̂–{ } x x̂–{ }T( )
t ∞→
lim=

x̂
·

Ax̂ Bu L yv Cx̂– Du–( )+ +=

ŷ
x̂

C
I

x̂ D
0

u+=

L
u yv
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the output and state estimates  and . Note that  estimates the true plant 
output

Discrete-Time Estimation

Given the discrete plant

and the noise covariance data

the Kalman estimator has equations

y x y

y Cx Du Hw+ +=

w

u

v

+

yv

x̂

Plant
y

Kalman
filter

u
ŷ

(Measurement noise)

Kalman estimator

x n 1+[ ] Ax n[ ] Bu n[ ] Gw n[ ]++=

yv n[ ] Cx n[ ] Du n[ ] Hw n[ ] v n[ ]+ + +=
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and generates optimal “current” output and state estimates  and  
using all available measurements including . The gain matrices  and 

 are derived by solving a discrete Riccati equation. The innovation gain  
is used to update the prediction  using the new measurement .

Usage [kest,L,P] = kalman(sys,Qn,Rn,Nn) returns a state-space model kest of the 
Kalman estimator given the plant model sys and the noise covariance data Qn, 
Rn, Nn (matrices  above). sys must be a state-space model with matrices

The resulting estimator kest has  as inputs and  (or their 
discrete-time counterparts) as outputs. You can omit the last input argument 
Nn when .

The function kalman handles both continuous and discrete problems and 
produces a continuous estimator when sys is continuous, and a discrete 
estimator otherwise. In continuous time, kalman also returns the Kalman gain 
L and the steady-state error covariance matrix P. Note that P is the solution of 
the associated Riccati equation. In discrete time, the syntax

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn)

returns the filter gain  and innovations gain , as well as the steady-state 
error covariances

Finally, use the syntaxes 

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn,sensors,known)

y n n[ ] x n n[ ]
yv n[ ] L

M M
x̂ n n 1–[ ] yv n[ ]

x̂ n n[ ] x̂ n n 1–[ ] M yv n[ ] Cx̂ n n 1–[ ]– Du n[ ]–( )+=

innovation

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Q R N, ,

A B G C D H, , ,

u  yv;[ ] ŷ ; x̂[ ]

N 0=

L M

P E e n n 1–[ ]e n n 1–[ ]T( ) ,
n ∞→
lim=    e n n 1–[ ] x n[ ] x n n 1–[ ]–=

Z E e n n[ ]e n n[ ]T( ) ,
n ∞→
lim=     e n n[ ] x n[ ] x n n[ ]–=
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for more general plants sys where the known inputs  and stochastic inputs 
 are mixed together, and not all outputs are measured. The index vectors 

sensors and known then specify which outputs  of sys are measured and 
which inputs are known. All other inputs are assumed stochastic.

Example See “LQG Design for the x-Axis” and “Kalman Filtering” for examples that use 
the kalman function.

Limitations The plant and noise data must satisfy:

•  detectable

•  and 

•  has no uncontrollable mode on the imaginary 
axis (or unit circle in discrete time)

with the notation

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic 
Systems, Second Edition, Addison-Wesley, 1990.

See Also care Solve continuous-time Riccati equations
dare Solve discrete-time Riccati equations
estim Form estimator given estimator gain
kalmd Discrete Kalman estimator for continuous plant
lqgreg Assemble LQG regulator
lqr Design state-feedback LQ regulator

u
w

y
u
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1kalmdPurpose Design discrete Kalman estimator for continuous plant

Syntax [kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

Description kalmd designs a discrete-time Kalman estimator that has response 
characteristics similar to a continuous-time estimator designed with kalman. 
This command is useful to derive a discrete estimator for digital 
implementation after a satisfactory continuous estimator has been designed.

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts) produces a discrete Kalman 
estimator kest with sample time Ts for the continuous-time plant

with process noise  and measurement noise  satisfying

The estimator kest is derived as follows. The continuous plant sys is first 
discretized using zero-order hold with sample time Ts (see c2d entry), and the 
continuous noise covariance matrices  and  are replaced by their discrete 
equivalents

The integral is computed using the matrix exponential formulas in [2]. A 
discrete-time estimator is then designed for the discretized plant and noise. See 
kalman for details on discrete-time Kalman estimation.

kalmd also returns the estimator gains L and M, and the discrete error 
covariance matrices P and Z (see kalman for details).

Limitations The discretized problem data should satisfy the requirements for kalman.

x· Ax Bu Gw+ +=        (state equation)
yv Cx Du v+ +=        (measurement equation)

w v

E w( ) E v( ) 0 ,     E wwT( ) Qn ,    = E vvT( ) Rn=  ,   E wvT( ) 0== =

Qn Rn

Qd eAτGQGTeATτ τd
0

Ts

∫=

Rd R Ts⁄=
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References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic 
Systems, Second Edition, Addison-Wesley, 1990.

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,” 
IEEE Trans. Automatic Control, AC-15, October 1970.

See Also kalman Design Kalman estimator
lqgreg Assemble LQG regulator
lqrd Discrete LQ-optimal gain for continuous plant
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1lftPurpose Redheffer star product (linear fractional transformation) of two LTI models

Syntax sys = lft(sys1,sys2)
sys = lft(sys1,sys2,nu,ny)

Description lft forms the star product or linear fractional transformation (LFT) of two LTI 
models or LTI arrays. Such interconnections are widely used in robust control 
techniques.

sys = lft(sys1,sys2,nu,ny) forms the star product sys of the two LTI 
models (or LTI arrays) sys1 and sys2. The star product amounts to the 
following feedback connection for single LTI models (or for each model in an 
LTI array).

This feedback loop connects the first nu outputs of sys2 to the last nu inputs of 
sys1 (signals ), and the last ny outputs of sys1 to the first ny inputs of sys2 
(signals ). The resulting system sys maps the input vector  to the 
output vector .

The abbreviated syntax 

sys = lft(sys1,sys2)

sys1

sys2

sys

z1

z2w2

w1

u

uy

y

u
y w1 ; w2[ ]

z1 ; z2[ ]
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produces:

• The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than 
sys1. This amounts to deleting  and  in the above diagram.

• The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than 
sys2. This amounts to deleting  and  in the above diagram.

Algorithm The closed-loop model is derived by elementary state-space manipulations.

Limitations There should be no algebraic loop in the feedback connection.

See Also connect Derive state-space model for block diagram 
interconnection

feedback Feedback connection

w2 z2

w1 z1

sys1

sys2

u
y u

y

z1

z2w2

w1

sys1

sys2

Lower LFT connection Upper LFT connection
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1lqgregPurpose Form LQG regulator given state-feedback gain and Kalman estimator

Syntax rlqg = lqgreg(kest,k)
rlqg = lqgreg(kest,k,'current') % discrete-time only

rlqg = lqgreg(kest,k,controls)

Description lqgreg forms the LQG regulator by connecting the Kalman estimator designed 
with kalman and the optimal state-feedback gain designed with lqr, dlqr, or 
lqry. The LQG regulator minimizes some quadratic cost function that trades 
off regulation performance and control effort. This regulator is dynamic and 
relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands

where  is the Kalman state estimate. The regulator state-space equations are

where  is the vector of plant output measurements (see kalman for 
background and notation). The diagram below shows this dynamic regulator in 
relation to the plant.

u Kx̂–=

x̂

x̂
·

A LC– B LD–( )K– x̂ Lyv+=

u Kx̂–=

yv
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In discrete time, you can form the LQG regulator using either the prediction 
 of  based on measurements up to , or the current state 

estimate  based on all available measurements including . While 
the regulator

is always well-defined, the current regulator

is causal only when  is invertible (see kalman for the notation). In 
addition, practical implementations of the current regulator should allow for 
the processing time required to compute  once the measurements  
become available (this amounts to a time delay in the feedback loop).

Usage rlqg = lqgreg(kest,k) returns the LQG regulator rlqg (a state-space model) 
given the Kalman estimator kest and the state-feedback gain matrix k. The 
same function handles both continuous- and discrete-time cases. Use 
consistent tools to design kest and k:

• Continuous regulator for continuous plant: use lqr or lqry and kalman.

• Discrete regulator for discrete plant: use dlqr or lqry and kalman.

u

y

+

+x̂
K–

LQG regulator 

u

Plant

Measurement
noise

Kalman
filter

Process
noise

yv

x̂ n n 1–[ ] x n[ ] yv n 1–[ ]
x̂ n n[ ] yv n[ ]

u n[ ] Kx̂ n n 1–[ ]–=

u n[ ] Kx̂ n n[ ]–=

I KMD–

u n[ ] yv n[ ]
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• Discrete regulator for continuous plant: use lqrd and kalmd.

In discrete time, lqgreg produces the regulator

by default (see “Description”). To form the “current” LQG regulator instead, use 

the syntax

rlqg = lqgreg(kest,k,'current')

This syntax is meaningful only for discrete-time problems.

rlqg = lqgreg(kest,k,controls) handles estimators that have access to 
additional known plant inputs . The index vector controls then specifies 
which estimator inputs are the controls , and the resulting LQG regulator 
rlqg has  and  as inputs (see figure below).

Note  Always use positive feedback to connect the LQG regulator to the plant.

Example See the example LQG Regulation.

u n[ ] Kx̂ n n 1–[ ]–=

u n[ ] Kx̂ n n[ ]–=

ud
u

ud yv

x̂

u

yv

Kalman

estimator
ud K– u

LQG regulator
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See Also kalman Kalman estimator design
kalmd Discrete Kalman estimator for continuous plant
lqr, dlqr State-feedback LQ regulator
lqrd Discrete LQ regulator for continuous plant
lqry LQ regulator with output weighting
reg Form regulator given state-feedback and estimator 

gains
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1lqrPurpose Design linear-quadratic (LQ) state-feedback regulator for state-space systems

Syntax [K,S,e] = lqr(SYS,Q,R)
[K,S,e] = lqr(SYS,Q,R,N)
[K,S,e] = lqr(A,B,Q,R,N)

Description [K,S,e] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K such that:

For a continuouse time system, the state-feedback law  minimizes the 
quadratic cost function

subject to the system dynamics .

In addition to the state-feedback gain K, lqr returns the solution S of the 
associated Riccati equation

and the closed-loop eigenvalues e = eig(A-B*K). Note that  is derived from 
 by

For a discrete-time state-space model, u[n]=-Kx[n] minimizes 

subject to x[n+1]=Ax[n]+Bu[n].

[K,S,e] = LQR(A,B,Q,R,N) is an equivalent syntax for continuous-time 
models with dynamics  dx/dt=Ax+Bu.

In all cases, the default value N=0 is assumed when N is omitted.

Limitations The problem data must satisfy:

• The pair  is stabilizable.

•  and .

u Kx–=

J u( ) xTQx uTRu 2xTNu+ +( ) td
0

∞

∫=

x· Ax Bu+=

ATS SA SB N+( )R 1– BTS NT
+( )– Q+ + 0=

K
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K R 1– BTS NT
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J x'Qx u'Ru 2x'Nu+ +{ }∑=
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R 0> Q NR 1– NT
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•  has no unobservable mode on the imaginary 
axis.

See Also care Solve continuous Riccati equations
dlqr State-feedback LQ regulator for discrete plant
lqgreg Form LQG regulator
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting

Q NR 1– NT
– A BR 1– NT

–,( )
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1lqrdPurpose Design discrete LQ regulator for continuous plant

Syntax [Kd,S,e] = lqrd(A,B,Q,R,Ts)
[Kd,S,e] = lqrd(A,B,Q,R,N,Ts)

Description lqrd designs a discrete full-state-feedback regulator that has response 
characteristics similar to a continuous state-feedback regulator designed using 
lqr. This command is useful to design a gain matrix for digital implementation 
after a satisfactory continuous state-feedback gain has been designed.

[Kd,S,e] = lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law

that minimizes a discrete cost function equivalent to the continuous cost 
function

The matrices A and B specify the continuous plant dynamics

and Ts specifies the sample time of the discrete regulator. Also returned are the 
solution S of the discrete Riccati equation for the discretized problem and the 
discrete closed-loop eigenvalues e = eig(Ad-Bd*Kd).

[Kd,S,e] = lqrd(A,B,Q,R,N,Ts) solves the more general problem with a 
cross-coupling term in the cost function.

Algorithm The equivalent discrete gain matrix Kd is determined by discretizing the 
continuous plant and weighting matrices using the sample time Ts and the 
zero-order hold approximation.

With the notation

u n[ ] Kdx n[ ]–=

J xTQx uTRu+( ) td
0

∞

∫=

x· Ax Bu+=

J xTQx uTRu 2xTNu+ +( ) td
0

∞

∫=
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the discretized plant has equations

and the weighting matrices for the equivalent discrete cost function are

The integrals are computed using matrix exponential formulas due to Van 
Loan (see [2]). The plant is discretized using c2d and the gain matrix is 
computed from the discretized data using dlqr.

Limitations The discretized problem data should meet the requirements for dlqr.

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic 
Systems, Second Edition, Addison-Wesley, 1980, pp. 439–440 

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,” 
IEEE Trans. Automatic Control, AC-15, October 1970.

See Also c2d Discretization of LTI model
dlqr State-feedback LQ regulator for discrete plant
kalmd Discrete Kalman estimator for continuous plant
lqr State-feedback LQ regulator for continuous plant

Φ τ( ) eAτ ,=           Ad Φ Ts( )=

Γ τ( ) eAηB η ,d
0

τ

∫=       Bd Γ Ts( )=

x n 1+[ ] Adx n[ ] Bdu n[ ]+=
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Φ τ( ) Γ τ( )
0 I

τd
0
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1lqryPurpose Linear-quadratic (LQ) state-feedback regulator with output weighting

Syntax [K,S,e] = lqry(sys,Q,R)
[K,S,e] = lqry(sys,Q,R,N)

Description Given the plant

or its discrete-time counterpart, lqry designs a state-feedback control

that minimizes the quadratic cost function with output weighting

(or its discrete-time counterpart). The function lqry is equivalent to lqr or 
dlqr with weighting matrices:

[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati 
solution S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space 
model sys specifies the continuous- or discrete-time plant data . 
The default value N=0 is assumed when N is omitted.

Example See LQG Design for the x-Axis for an example.

Limitations The data  must satisfy the requirements for lqr or dlqr.

See Also lqr State-feedback LQ regulator for continuous plant
dlqr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design
lqgreg Form LQG regulator
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1lsimPurpose Simulate LTI model response to arbitrary inputs

Syntax lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh') 

lsim(sys1,sys2,...,sysN,u,t)
lsim(sys1,sys2,...,sysN,u,t,x0)
lsim(sys1,'PlotStyle1',...,sysN,'PlotStyleN',u,t)

[y,t,x] = lsim(sys,u,t,x0)

lsim(sys)

Description lsim simulates the (time) response of continuous or discrete linear systems to 
arbitrary inputs. When invoked without left-hand arguments, lsim plots the 
response on the screen.

lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the 
input time history t,u. The vector t specifies the time samples for the 
simulation and consists of regularly spaced time samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as 
many columns as system inputs. Each row u(i,:) specifies the input value(s) 
at the time sample t(i). 

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete 
time, u must be sampled at the same rate as the system (t is then redundant 
and can be omitted or set to the empty matrix). In continuous time, the time 
sampling dt=t(2)-t(1) is used to discretize the continuous model. If dt is too 
large (undersampling), lsim issues a warning suggesting that you use a more 
appropriate sample time, but will use the specified sample time. See Algorithm 
on page 155 for a discussion of sample times.

lsim(sys,u,t,x0) further specifies an initial condition x0 for the system 
states. This syntax applies only to state-space models.
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lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0,'foh') explicitly specifies how 
the input values should be interpolated between samples (zero-order hold or 
linear interpolation). By default, lsim selects the interpolation method 
automatically based on the smoothness of the signal U.

Finally,

lsim(sys1,sys2,...,sysN,u,t) 

simulates the responses of several LTI models to the same input history t,u and 
plots these responses on a single figure. As with bode or plot, you can specify 
a particular color, linestyle, and/or marker for each system, for example,

lsim(sys1,'y:',sys2,'g--',u,t,x0)

The multisystem behavior is similar to that of bode or step.

When invoked with left-hand arguments, 

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation, and the 
state trajectories x (for state-space models only). No plot is drawn on the 
screen. The matrix y has as many rows as time samples (length(t)) and as 
many columns as system outputs. The same holds for x with “outputs” replaced 
by states. Note that the output t may differ from the specified time vector when 
the input data is undersampled (see Algorithm on page 155).

lsim(sys), with no additional arguments, opens the Linear Simulation Tool, 
which affords greater flexibility in specifying input signals and initial 
conditions. See “Specifying Input Signals and Input Conditions” in Getting 
Started with the Control System Toolbox for more information.

Example Simulate and plot the response of the system

H s( )

2s2 5s 1+ +

s2 2s 3+ +
-------------------------------

s 1–

s2 s 5+ +
------------------------

=
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to a square wave with period of four seconds. First generate the square wave 
with gensig. Sample every 0.1 second during 10 seconds:

[u,t] = gensig('square',4,10,0.1);

Then simulate with lsim.

H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)

Algorithm Discrete-time systems are simulated with ltitr (state space) or filter 
(transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or 
'foh' method ('foh' is used for smooth input signals and 'zoh' for 
discontinuous signals such as pulses or square waves). The sampling period is 
set to the spacing dt between the user-supplied time samples t. 

The choice of sampling period can drastically affect simulation results. To 
illustrate why, consider the second-order model
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To simulate its response to a square wave with period 1 second, you can proceed 
as follows:

w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values
lsim(h,u,t)

lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or 
faster.

and produces this plot.

H s( ) ω2

s2 2s ω2
+ +

-------------------------------  ,= ω 62.83=
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To improve on this response, discretize  using the recommended sampling 
period:

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
lsim(hd,us,ts)

This response exhibits strong oscillatory behavior hidden from the 
undersampled version.

See Also gensig Generate test input signals for lsim
impulse Impulse response
initial Free response to initial condition
ltiview LTI system viewer
step Step response

H s( )
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1lsimplotPurpose Simulate LTI model response to arbitrary inputs and return the plot handle

Syntax h = lsimplot(sys)

h = lsimplot(sys1,sys2,...)
h = lsimplot(sys,u,t)
h = lsimplot(sys,u,t,x0)
h = lsimplot(sys1,sys2,...,u,t,x0)
h = lsimplot(AX,...)
h = lsimplot(..., plotoptions)
h = lsimplot(sys,u,t,x0,'zoh')
h = lsimplot(sys,u,t,x0,'foh')

Description h = lsimplot(sys) opens the Linear Simulation Tool for the LTI model sys 
(created with tf, zpk, or ss), which enables interactive specification of driving 
input(s), the time vector, and initial state. It also returns the plot handle h. You 
can use this handle to customize the plot with the getoptions and setoptions 
commands. Type

help timeoptions 

for a list of available plot options.

lsimplot(sys1,sys2,...) opens the Linear Simulation Tool for multiple LTI 
models sys1,sys2,.... Driving inputs are common to all specified systems but 
initial conditions can be specified separately for each. 

lsimplot(sys,u,t) plots the time response of the LTI model sys to the input 
signal described by u and t.  The time vector t consists of regularly spaced time 
samples. For MIMO systems, u is a matrix with as many columns as inputs and 
whose ith row specifies the input value at time t(i). For SISO systems u can 
be specified either as a row or column vector. For example, 

t = 0:0.01:5;   
u = sin(t);   
lsimplot(sys,u,t) 

simulates the response of a single-input model sys to the input u(t)=sin(t) 
during 5 seconds.
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For discrete-time models, u should be sampled at the same rate as sys (t is then 
redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period t(2)-t(1) small 
enough to accurately describe the input u.  lsim issues a warning when u is 
undersampled, and hidden oscillations can occur. 

lsimplot(sys,u,t,x0) specifies the initial state vector x0 at time t(1) (for 
state-space models only).  x0 is set to zero when omitted.

lsimplot(sys1,sys2,...,u,t,x0) simulates the responses of multiple LTI 
models sys1,sys2,... on a single plot.  The initial condition x0 is optional.  You 
can also specify a color, line style, and marker for each system, as in  

lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)

lsimplot(AX,...) plots into the axes with handle AX.

lsimplot(..., plotoptions) plots the initial condition response with the 
options specified in plotoptions. Type

help timeoptions 

for more detail.

For continuous-time models, lsimplot(sys,u,t,x0,'zoh')  or  
lsimplot(sys,u,t,x0,'foh') explicitly specifies how the input values should 
be interpolated between samples (zero-order hold or linear interpolation).  By 
default, lsimplot selects the interpolation method automatically based on the 
smoothness of the signal u.

See Also getoptions Get plot options
lsim Simulate LTI model response to arbitrary inputs
setoptions Set plot options
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1ltimodelsPurpose Help on LTI models

Syntax ltimodels
ltimodels(modeltype)

Description ltimodels displays general information on the various types of LTI models 
supported in the Control System Toolbox.

ltimodels(modeltype) gives additional details and examples for each type of 
LTI model. The string modeltype selects the model type among the following:

• tf — Transfer functions (TF objects)

• zpk — Zero-pole-gain models (ZPK objects)

• ss — State-space models (SS objects)

• frd — Frequency response data models (FRD objects).

Note that you can type

ltimodels zpk

as a shorthand for

ltimodels('zpk')

 See Also frd Create or convert to FRD models
ltiprops Help on LTI model properties
ss Create or convert to a state-space model
tf Create or convert to a transfer function model
zpk Create or convert to a zero/pole/gain model
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1ltipropsPurpose Help on LTI model properties

Syntax ltimodels

ltimodels(modeltype)

Description ltiprops displays details on the generic properties of LTI models.

ltiprops(modeltype) gives details on the properties specific to the various 
types of LTI models. The string modeltype selects the model type among the 
following:

• tf — transfer functions (TF objects)

• zpk — zero-pole-gain models (ZPK objects)

• ss — state-space models (SS objects)

• frd — frequency response data (FRD objects).

Note that you can type

ltiprops tf

as a shorthand for

ltiprops('tf')

See also get Get the properties for an LTI model
ltimodels Help on LTI models
set Set or modify LTI model properties
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1ltiviewPurpose Initialize an LTI Viewer for LTI system response analysis

Syntax ltiview 
ltiview(sys1,sys2,...,sysn)
ltiview('plottype',sys1,sys2,...,sysn)
ltiview('plottype',sys,extras)
ltiview('clear',viewers) 
ltiview('current',sys1,sys2,...,sysn,viewers) 

Description ltiview when invoked without input arguments, initializes a new LTI Viewer 
for LTI system response analysis. 

ltiview(sys1,sys2,...,sysn) opens an LTI Viewer containing the step 
response of the LTI models sys1,sys2,...,sysn. You can specify a distinctive 
color, line style, and marker for each system, as in

sys1 = rss(3,2,2);
sys2 = rss(4,2,2);
ltiview(sys1,'r-*',sys2,'m--');

ltiview('plottype',sys) initializes an LTI Viewer containing the LTI 
response type indicated by plottype for the LTI model sys. The string 
plottype can be any one of the following:

'step'
'impulse'
'initial'
'lsim'
'pzmap'
'bode'
'nyquist'
'nichols'
'sigma'

or, 

plottype can be a cell vector containing up to six of these plot types. For 
example, 

ltiview({'step';'nyquist'},sys)

displays the plots of both of these response types for a given system sys.
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ltiview(plottype,sys,extras) allows the additional input arguments 
supported by the various LTI model response functions to be passed to the 
ltiview command.

extras is one or more input arguments as specified by the function named in 
plottype. These arguments may be required or optional, depending on the type 
of LTI response. For example, if plottype is 'step' then extras may be the 
desired final time, Tfinal, as shown below.

ltiview('step',sys,Tfinal)

However, if plottype is 'initial', the extras arguments must contain the 
initial conditions x0 and may contain other arguments, such as Tfinal.

ltiview('initial',sys,x0,Tfinal)

See the individual references pages of each possible plottype commands for a 
list of appropriate arguments for extras.

ltiview('clear',viewers) clears the plots and data from the LTI Viewers 
with handles viewers.

ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the 
systems sys1,sys2,...,sysn to the LTI Viewers with handles viewers. If 
these new systems do not have the same I/O dimensions as those currently in 
the LTI Viewer, the LTI Viewer is first cleared and only the new responses are 
shown. 

Finally,

ltiview(plottype,sys1,sys2,...sysN)
ltiview(plottype,sys1,PlotStyle1,sys2,PlotStyle2,...)
ltiview(plottype,sys1,sys2,...sysN,extras)

initializes an LTI Viewer containing the responses of multiple LTI models, 
using the plot styles in PlotStyle, when applicable. See the individual 
reference pages of the LTI response functions for more information on 
specifying plot styles.

See Also bode Bode response
impulse Impulse response
initial Response to initial condition
lsim Simulate LTI model response to arbitrary inputs
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nichols Nichols response
nyquist Nyquist response
pzmap Pole/zero map
sigma Singular value response
step Step response
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1lyapPurpose Solve continuous-time Lyapunov equations

Syntax X = lyap(A,Q)
X = lyap(A,B,C)
X = lyap(A,Q,[],E) 

Description lyap solves the special and general forms of the Lyapunov matrix equation. 
Lyapunov equations arise in several areas of control, including stability theory 
and the study of the RMS behavior of systems.

X = lyap(A,Q) solves the Lyapunov equation

where  and  are square matrices of identical sizes. The solution X is a 
symmetric matrix if  is.

X = lyap(A,B,C) solves the Sylvester equation

The matrices A, B, and C must have compatible dimensions but need not be 
square.

X = lyap(A,Q,[],E) solves the generalized Lyapunov equation

where Q is a symmetric matrix. The empty square brackets, [], are mandatory. 
If you place any values inside them, the function will error out.

Algorithm lyap transforms the  and  matrices to complex Schur form, computes the 
solution of the resulting triangular system, and transforms this solution back 
[1].

lyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations 
and SB04MD (SLICOT) and ZTRSYL (LAPACK) for Sylvester equations.

AX XAT Q+ + 0=

A Q
Q

AX XB C+ + 0=

AXET EXAT Q+ + 0=

A B
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Limitations The continuous Lyapunov equation has a (unique) solution if the eigenvalues 
 of  and  of satisfy

If this condition is violated, lyap produces the error message

Solution does not exist or is not unique.

References [1] Bartels, R.H. and G.W. Stewart, “Solution of the Matrix Equation AX + XB 
= C,” Comm. of the ACM, Vol. 15, No. 9, 1972. 

[2] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere 
Publishing, 1975. pp. 328–338. 

See Also covar Covariance of system response to white noise
dlyap Solve discrete Lyapunov equations

α1 α2 ... αn, , , A β1 β2 ... βn, , , B

αi βj 0≠+ for all pairs i j,( )
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1lyapcholPurpose Square-root solver for continuous-time Lyapunov equations

Syntax R = lypachol(A,B)
R = lyapchol(A,B,E)

Description R = lyapchol(A,B) computes a Cholesky factorization X = R'*R of the solution 
X to the Lyapunov matrix equation:

A*X + X*A' + B*B' = 0

All eigenvalues of matrix A must lie in the open left half-plane for R to exist.

X = lyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving 
the generalized Lyapunov equation:

A*X*E' + E*X*A' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open left half-plane for R to 
exist.

Algorithm lyapchol uses SLICOT routines SB03OD and SG03BD. 

See Also lyap Solver for continuous-time Lyapunov equations
dlyapchol Square-root solver for discrete-time Lyapunov 

equations
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1marginPurpose Compute gain and phase margins and associated crossover frequencies

Syntax [Gm,Pm,Wcg,Wcp] = margin(sys)
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)
margin(sys)

Description margin calculates the minimum gain margin, phase margin, and associated 
crossover frequencies of SISO open-loop models. The gain and phase margins 
indicate the relative stability of the control system when the loop is closed. 
When invoked without left-hand arguments, margin produces a Bode plot and 
displays the margins on this plot.

The gain margin is the amount of gain increase required to make the loop gain 
unity at the frequency where the phase angle is –180°. In other words, the gain 
margin is  if  is the gain at the –180° phase frequency. Similarly, the 
phase margin is the difference between the phase of the response and –180° 
when the loop gain is 1.0. The frequency at which the magnitude is 1.0 is called 
the unity-gain frequency or crossover frequency. It is generally found that gain 
margins of three or more combined with phase margins between 30 and 60 
degrees result in reasonable trade-offs between bandwidth and stability.

[Gm,Pm,Wcg,Wcp] = margin(sys) computes the gain margin Gm, the phase 
margin Pm, and the corresponding crossover frequencies Wcg and Wcp, given the 
SISO open-loop model sys. This function handles both continuous- and 
discrete-time cases. When faced with several crossover frequencies, margin 
returns the smallest gain and phase margins.

[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) derives the gain and phase 
margins from the Bode frequency response data (magnitude, phase, and 
frequency vector). Interpolation is performed between the frequency points to 
estimate the margin values. This approach is generally less accurate.

When invoked without left-hand argument, 

margin(sys)

plots the open-loop Bode response with the gain and phase margins marked by 
vertical lines. 

1 g⁄ g
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Example You can compute the gain and phase margins of the open-loop discrete-time 
transfer function. Type

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)

 MATLAB responds with

Transfer function:
 0.04798 z + 0.0464
---------------------
z^2 - 1.81 z + 0.9048
 
Sampling time: 0.1

Type

[Gm,Pm,Wcg,Wcp] = margin(hd);
[Gm,Pm,Wcg,Wcp]

and MATLAB returns

ans =
2.0517   13.5711    5.4374    4.3544

You can also display these margins graphically.
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margin(hd)

Algorithm The phase margin is computed using  theory, and the gain margin by 
solving  for the frequency .

See Also bode Bode frequency response
ltiview LTI system viewer

H∞
H jω( ) H jω( )= ω
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1minrealPurpose Minimal realization or pole-zero cancellation

Syntax sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)

Description sysr = minreal(sys) eliminates uncontrollable or unobservable state in 
state-space models, or cancels pole-zero pairs in transfer functions or 
zero-pole-gain models. The output sysr has minimal order and the same 
response characteristics as the original model sys.

sysr = minreal(sys,tol) specifies the tolerance used for state elimination or 
pole-zero cancellation. The default value is tol = sqrt(eps) and increasing 
this tolerance forces additional cancellations.

[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an 
orthogonal matrix U such that (U*A*U',U*B,C*U') is a Kalman decomposition 
of (A,B,C)

Example The commands

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

produce the nonminimal zero-pole-gain model by typing cloop.

Zero/pole/gain:
      s (s-1)
-------------------
(s-1) (s^2 + s + 1)

To cancel the pole-zero pair at , type

cloop = minreal(cloop)

and MATLAB returns

Zero/pole/gain:
      s
-------------
(s^2 + s + 1)

s 1=
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Algorithm Pole-zero cancellation is a straightforward search through the poles and zeros 
looking for matches that are within tolerance. Transfer functions are first 
converted to zero-pole-gain form. 

See Also balreal Grammian-based input/output balancing
modred Model order reduction
sminreal Structured model reduction
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1modredPurpose Model order reduction

Syntax rsys = modred(sys,elim)
rsys = modred(sys,elim,'method')

Description modred reduces the order of a continuous or discrete state-space model sys by 
eliminating the states found in the vector elim. The full state vector X is 
partitioned as X = [X1;X2] where X2 is to be discarded, and the reduced state 
is set to Xr = X1+T*X2 where T is chosen to enforce matching DC gains 
(steady-state response) between sys and rsys. 

elim can be a vector of indices or a logical vector commensurate with X where 
true values mark states to be discarded. This function is usually used in 
conjunction with balreal. Use balreal to first isolate states with negligible 
contribution to the I/O response. If sys has been balanced with balreal and the 
vector g of Hankel singular values has M small entries, you can use modred to 
eliminate the corresponding M states. For example:

[sys,g] = balreal(sys) % Compute balanced realization
elim = (g<1e-8) % Small entries of g are negligible states
rsys = modred(sys,elim) % Remove negligible states

rsys = modred(sys,elim,'method') also specifies the state elimination 
method. Choices for 'method' include

• 'MatchDC': Enforce matching DC gains (default)

• 'Truncate': Simply delete X2 and sets Xr = X1.

The 'Truncate' option tends to produces a better approximation in the 
frequency domain, but the DC gains are not guaranteed to match.

If the state-space model sys has been balanced with balreal and the 
grammians have  small diagonal entries, you can reduce the model order by 
eliminating the last  states with modred.

Example1 Consider the continuous fourth-order model

m
m

h s( ) s3 11s2 36s 26+ + +

s4 14.6+ s
3

74.96s2 153.7s 99.65+ + +
------------------------------------------------------------------------------------------------------=
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To reduce its order, first compute a balanced state-space realization with 
balreal by typing

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)
g'

MATLAB returns

ans =
   1.3938e-01   9.5482e-03   6.2712e-04   7.3245e-06

The last three diagonal entries of the balanced grammians are small, so 
eliminate the last three states with modred using both matched DC gain and 
direct deletion methods.

hmdc = modred(hb,2:4,'MatchDC')
hdel = modred(hb,2:4,'Truncate')

Both hmdc and hdel are first-order models. Compare their Bode responses 
against that of the original model .h s( )
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bode(h,'-',hmdc,'x',hdel,'*')

The reduced-order model hdel is clearly a better frequency-domain 
approximation of . Now compare the step responses.h s( )
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step(h,'-',hmdc,'-.',hdel,'--')

While hdel accurately reflects the transient behavior, only hmdc gives the true 
steady-state response.

Algorithm The algorithm for the matched DC gain method is as follows. For 
continuous-time models

the state vector is partitioned into , to be kept, and , to be eliminated.

x· Ax Bu+=

y Cx Du+=

x1 x2

x·1

x·2

A11 A12

A21 A22

x1

x2

B1

B2

u+=

y C1 C2 x Du+=
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Next, the derivative of  is set to zero and the resulting equation is solved for 
. The reduced-order model is given by

The discrete-time case is treated similarly by setting

Limitations With the matched DC gain method,  must be invertible in continuous time, 
and  must be invertible in discrete time.

See Also balreal Input/output balancing of state-space models
minreal Minimal state-space realizations

x2
x1

x·1 A11 A12A22
1– A21–[ ]x1 B1 A12A22

1– B2–[ ]u+=

y C1 C2A22
1– A21–[ ]x D C2A22

1– B2–[ ]u+=

x2 n 1+[ ] x2 n[ ]=

A22
I A22–
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1modsepPurpose Region-based modal decomposition

Syntax [H,H0] = modsep(G,N,REGIONFCN)
[H,H0] = modsep(G,N,REGIONFCN,PARAM1,...)

Description [H,H0] = modsep(G,N,REGIONFCN) decomposes the LTI model G into a sum of 
n simpler models Hj with their poles in disjoint regions Rj of the complex plane:

G can be any LTI model created with ss, tf, or zpk, and N is the number of 
regions used in the decomposition. modsep packs the submodels Hj into an LTI 
array H and returns the static gain H0 separately. Use H(:,:,j) to retrieve the 
submodel Hj(s).

To specify the regions of interest, use a function of the form

IR = REGIONFCN(p)

that assigns a region index IR between 1 and N to a given pole p. You can specify 
this function as a string or a function handle, and use the syntax 
MODSEP(G,N,REGIONFCN,PARAM1,...) to pass extra input arguments: 

IR = REGIONFCN(p,PARAM1,...)

 Example To decompose G into G(z) = H0 + H1(z) + H2(z) where H1 and H2 have their 
poles inside and outside the unit disk respectively, use 

[H,H0]  = modsep(G,2,@udsep)

where the function udsep is defined by

function r = udsep(p)
if abs(p)<1, r = 1;  % assign r=1 to poles inside unit disk
else         r = 2;  % assign r=2 to poles outside unit disk
end

To extract H1(z) and H2(z) from the LTI array H, use 

H1 = H(:,:,1);  H2 = H(:,:,2);

    See Also stabsep Stable/unstable decomposition of LTI models

G s( ) H0 Hj s( )
j 1=

N
∑+=
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1ndimsPurpose Provide the number of the dimensions of an LTI model or LTI array

Syntax n = ndims(sys)

Description n = ndims(sys) is the number of dimensions of an LTI model or an array of 
LTI models sys. A single LTI model has two dimensions (one for outputs, and 
one for inputs). An LTI array has 2+p dimensions, where  is the number 
of array dimensions. For example, a 2-by-3-by-4 array of models has 2+3=5 
dimensions.

ndims(sys) = length(size(sys))

Example sys = rss(3,1,1,3);
ndims(sys)

ans =
     4

ndims returns 4 for this 3-by-1 array of SISO models.

See Also size Returns a vector containing the lengths of the 
dimensions of an LTI array or model

p 2≥
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1ngridPurpose Superimpose a Nichols chart on a Nichols plot

Syntax ngrid

Description ngrid superimposes Nichols chart grid lines over the Nichols frequency 
response of a SISO LTI system. The range of the Nichols grid lines is set to 
encompass the entire Nichols frequency response.

The chart relates the complex number  to , where  is any 
complex number. For SISO systems, when  is a point on the open-loop 
frequency response, then 

is the corresponding value of the closed-loop frequency response assuming unit 
negative feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the 
region –40 dB to 40 dB in magnitude and –360 degrees to 0 degrees in phase. 
If the current axis does not contain a SISO Nichols frequency response, ngrid 
returns a warning.

Example Plot the Nichols response with Nichols grid lines for the system. 

Type

H = tf([-4 48 -18 250 600],[1 30 282 525 60])

 MATLAB returns

Transfer function:
- 4 s^4 + 48 s^3 - 18 s^2 + 250 s + 600
---------------------------------------
  s^4 + 30 s^3 + 282 s^2 + 525 s + 60

Type

nichols(H)

H 1 H+( )⁄ H H
H

H
1 H+
--------------

H s( ) 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---------------------------------------------------------------------------------------=
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ngrid

See Also nichols Nichols plots
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1nicholsPurpose Compute Nichols frequency response of LTI models

Syntax nichols(sys)
nichols(sys,w)

nichols(sys1,sys2,...,sysN)
nichols(sys1,sys2,...,sysN,w)
nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

Description nichols computes the frequency response of an LTI model and plots it in the 
Nichols coordinates. Nichols plots are useful to analyze open- and closed-loop 
properties of SISO systems, but offer little insight into MIMO control loops. 
Use ngrid to superimpose a Nichols chart on an existing SISO Nichols plot.

nichols(sys) produces a Nichols plot of the LTI model sys. This model can be 
continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces 
an array of Nichols plots, each plot showing the response of one particular I/O 
channel. The frequency range and gridding are determined automatically 
based on the system poles and zeros. 

nichols(sys,w) explicitly specifies the frequency range or frequency points to 
be used for the plot. To focus on a particular frequency interval [wmin,wmax], 
set w = {wmin,wmax}. To use particular frequency points, set w to the vector of 
desired frequencies. Use logspace to generate logarithmically spaced 
frequency vectors. Frequencies should be specified in radians/sec.

nichols(sys1,sys2,...,sysN) or nichols(sys1,sys2,...,sysN,w) 
superimposes the Nichols plots of several LTI models on a single figure. All 
systems must have the same number of inputs and outputs, but may otherwise 
be a mix of continuous- and discrete-time systems. You can also specify a 
distinctive color, linestyle, and/or marker for each system plot with the syntax

nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments,
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[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the 
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays similar to 
those produced by bode (see the bode reference page). They have dimensions

 

Example Plot the Nichols response of the system

num = [-4 48 -18 250 600];
den = [1 30 282 525 60];
H = tf(num,den)

nichols(H); ngrid

number of outputs( ) number of inputs( )× length of w( )×

H s( ) 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---------------------------------------------------------------------------------------=
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The right-click menu for Nichols plots includes the Tight option under Zoom. 
You can use this to clip unbounded branches of the Nichols plot.

Algorithm See bode.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
ngrid Grid on Nichols plot
nyquist Nyquist plot
sigma Singular value plot
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1nicholsplotPurpose Plot Nichols frequency response and return the plot handle

Syntax h = nicholsplot(sys)

h = nicholsplot(sys,{wmin,wmax})
h = nicholsplot(sys,w)
h = nicholsplot(sys1,sys2,...,w)
h = nicholsplot(AX,...)
h = nicholsplot(..., plotoptions)

Description h = nicholsplot(sys) draws the nichols plot of the LTI model sys (created 
with tf, zpk, ss, or frd).  It also returns the plot handle h. You can use this 
handle to customize the plot with the getoptions and setoptions commands. 
Type

help nicholsoptions 

for a list of available plot options.

The frequency range and number of points are chosen automatically.  See bode 
for details on the notion of frequency in discrete time.

nicholsplot(sys,{wmin,wmax}) draws the Nichols plot for frequencies 
between wmin and wmax (in rad/s).

nicholsplot(sys,w) uses the user-supplied vector w of frequencies, in radians/
second, at which the Nichols response is to be evaluated. See logspace to 
generate logarithmically spaced frequency vectors.

nicholsplot(sys1,sys2,...,w) draws the Nichols plots of multiple LTI 
models sys1,sys2,... on a single plot.  The frequency vector w is optional.  You 
can also specify a color, line style, and marker for each system, as in  

nicholsplot(sys1,'r',sys2,'y--',sys3,'gx').

nicholsplot(AX,...) plots into the axes with handle AX.

nicholsplot(..., plotoptions) plots the Nichols plot with the options 
specified in plotoptions. Type

help nicholsoptions 

for more details.
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Example Generate a Nichols plot and use the plot handle to change the frequency units 
to Hz.

sys = rss(5);
h = nicholsplot(sys);
% Change units to Hz 
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
nichols Compute Nichols frequency responses of LTI models
setoptions Set plot options
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1normPurpose Compute LTI model norms

Syntax norm(sys)
norm(sys,2)

norm(sys,inf)
norm(sys,inf,tol)
[ninf,fpeak] = norm(sys)

Description norm computes the  or  norm of a continuous- or discrete-time LTI model.

H2 Norm
The  norm of a stable continuous system with transfer function , is the 
root-mean-square of its impulse response, or equivalently

This norm measures the steady-state covariance (or power) of the output 
response  to unit white noise inputs . 

 

Infinity Norm
The infinity norm is the peak gain of the frequency response, that is, 

where  denotes the largest singular value of a matrix.

The discrete-time counterpart is 

H2 L∞

H2 H s( )

H 2
1

2π
------ Trace H jω( )HH jω( )( ) ωd

∞–

∞

∫=

y Hw= w

H 2
2 E y t( )Ty t( ){ }  ,

t ∞→
lim= E w t( )w τ( )T( ) δ t τ–( )I=

H s( ) ∞ max H jω( )=
ω

        (SISO case)

H s( ) ∞ max σmax H jω( )( )=
ω

  (MIMO case)

σmax .( )
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Usage norm(sys) or norm(sys,2) both return the  norm of the TF, SS, or ZPK 
model sys. This norm is infinite in the following cases:

• sys is unstable.

• sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the 
frequency ).

Note that norm(sys) produces the same result as

sqrt(trace(covar(sys,1)))

norm(sys,inf) computes the infinity norm of any type of LTI model sys. This 
norm is infinite if sys has poles on the imaginary axis in continuous time, or on 
the unit circle in discrete time.

norm(sys,inf,tol) sets the desired relative accuracy on the computed 
infinity norm (the default value is tol=1e-2).

[ninf,fpeak] = norm(sys,inf) also returns the frequency fpeak where the 
gain achieves its peak value.

Example Consider the discrete-time transfer function

with sample time 0.1 second. Compute its  norm by typing

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)

ans =
    1.2438

Compute its infinity norm by typing

[ninf,fpeak] = norm(H,inf)

H z( ) ∞         max       σmax H ejθ( )( )=
θ 0 π,[ ]∈

H2

ω ∞=

H z( ) z3 2.841z2
– 2.875z 1.004–+

z3 2.417z2
– 2.003z 0.5488–+

---------------------------------------------------------------------------------=

H2
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ninf =
    2.5488
 
fpeak =
    3.0844

These values are confirmed by the Bode plot of .

bode(H)

The gain indeed peaks at approximately 3 rad/sec and its peak value in dB is 
found by typing

20*log10(ninf)

MATLAB returns

ans =

H z( )

Frequency (rad/sec)
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    8.1268

Algorithm norm uses the same algorithm as covar for the  norm, and the algorithm of 
[1] for the infinity norm. sys is first converted to state space.

References [1] Bruisma, N.A. and M. Steinbuch, “A Fast Algorithm to Compute the 
-Norm of a Transfer Function Matrix,” System Control Letters, 14 (1990), 

pp. 287–293.

See Also bode Bode plot
freqresp Frequency response computation
sigma Singular value plot

H2

H∞
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1nyquistPurpose Compute Nyquist frequency response of LTI models

Syntax nyquist(sys)
nyquist(sys,w)

nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

Description nyquist calculates the Nyquist frequency response of LTI models. When 
invoked without left-hand arguments, nyquist produces a Nyquist plot on the 
screen. Nyquist plots are used to analyze system properties including gain 
margin, phase margin, and stability.

nyquist(sys) plots the Nyquist response of an arbitrary LTI model sys. This 
model can be continuous or discrete, and SISO or MIMO. In the MIMO case, 
nyquist produces an array of Nyquist plots, each plot showing the response of 
one particular I/O channel. The frequency points are chosen automatically 
based on the system poles and zeros. 

nyquist(sys,w) explicitly specifies the frequency range or frequency points to 
be used for the plot. To focus on a particular frequency interval, set 
w = {wmin,wmax}. To use particular frequency points, set w to the vector of 
desired frequencies. Use logspace to generate logarithmically spaced 
frequency vectors. Frequencies should be specified in rad/sec.

nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w) 
superimposes the Nyquist plots of several LTI models on a single figure. All 
systems must have the same number of inputs and outputs, but may otherwise 
be a mix of continuous- and discrete-time systems. You can also specify a 
distinctive color, linestyle, and/or marker for each system plot with the syntax

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments 
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[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at the 
frequencies w (in rad/sec). re and im are 3-D arrays (see “Arguments” below for 
details).

Arguments The output arguments re and im are 3-D arrays with dimensions

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real and 
imaginary parts of the response at the frequency . 

For MIMO systems with transfer function , re(:,:,k) and im(:,:,k) 
give the real and imaginary parts of  (both arrays with as many rows 
as outputs and as many columns as inputs). Thus, 

where  is the transfer function from input  to output .

Example Plot the Nyquist response of the system

H = tf([2 5 1],[1 2 3])

number of outputs( ) number of inputs( )× length of w( )×

ωk w(k)=

re(1,1,k) Re h jωk( )( )=

im(1,1,k) Im h jωk( )( )=

H s( )
H jωk( )

re(i,j,k) Re hij jωk( )( )=

im(i,j,k) Im hij jωk( )( )=

hij j i

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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nyquist(H)

The nyquist function has support for M-circles, which are the contours of the 
constant closed-loop magnitude. M-circles are defined as the locus of complex 
numbers where 

is a constant value. In this equation, ω is the frequency in radians/second, and 
G is the collection of complex numbers that satisfy the constant magnitude 
requirement.

To activate the grid, select Grid from the right-click menu or type 

grid

T jω( ) G jω( )
1 G jω( )+
-------------------------=
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at the MATLAB prompt. This figure shows the M circles for transfer function 
H.

You have two zoom options available from the right-click menu that apply 
specifically to Nyquist plots:

• Tight —Clips unbounded branches of the Nyquist plot, but still includes the 
critical point (-1, 0)

• On (-1,0) — Zooms around the critical point (-1,0)
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Also, click anywhere on the curve to activate data markers that display the real 
and imaginary values at a given frequency. This figure shows the nyquist plot 
with a data marker.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
sigma Singular value plot
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1nyquistplotPurpose Plot Nyquist frequency response and return the plot handle

Syntax h = nyquistplot(sys)

h = nyquistplot(sys,{wmin,wmax})
h = nyquistplot(sys,w)
h = nyquistplot(sys1,sys2,...,w)
h = nyquistplot(AX,...)
h = nyquistplot(..., plotoptions)

Description h = nyquistplot(sys) draws the Nyquist plot of the LTI model sys (created 
with tf, zpk, ss, or frd).  It also returns the plot handle h. You can use this 
handle to customize the plot with the getoptions and setoptions commands. 
Type

help nyquistoptions 

for a list of available plot options.

The frequency range and number of points are chosen automatically.  See bode 
for details on the notion of frequency in discrete time.

nyquistplot(sys,{wmin,wmax}) draws the Nyquist plot for frequencies 
between wmin and wmax (in rad/s).

nyquistplot(sys,w) uses the user-supplied vector w of frequencies (in rad/s) 
at which the Nyquist response is to be evaluated. See logspace to generate 
logarithmically spaced frequency vectors.

nyquistplot(sys1,sys2,...,w) draws the Nyquist plots of multiple LTI 
models sys1,sys2,... on a single plot.  The frequency vector w is optional.  You 
can also specify a color, line style, and marker for each system, as in  

nyquistplot(sys1,'r',sys2,'y--',sys3,'gx').

nyquistplot(AX,...) plots into the axes with handle AX.

nyquistplot(..., plotoptions) plots the Nyquist response with the options 
specified in plotoptions. Type

help nyquistoptions 

for more details. 
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Example Plot the Nyquist frequency response and change the units to Hz.

sys = rss(5);
h = nicholsplot(sys);
% Change units to Hz 
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
nyquist Nyquist frequency response of LTI models
setoptions Set plot options
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1obsvPurpose Form the observability matrix

Syntax Ob = obsv(A,B)
Ob = obsv(sys)

Description obsv computes the observability matrix for state-space systems. For an n-by-n 
matrix A and a p-by-n matrix C, obsv(A,C) returns the observability matrix

with n columns and np rows.

Ob = obsv(sys) calculates the observability matrix of the state-space model 
sys. This syntax is equivalent to executing

Ob = obsv(sys.A,sys.C)

The model is observable if Ob has full rank n.

Example Determine if the pair

A =
     1     1
     4    -2

C =
     1     0
     0     1

is observable. Type

Ob = obsv(A,C);

% Number of unobservable states
unob = length(A)-rank(Ob)

Ob

C
CA

CA2

:

CAn 1–

=
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MATLAB responds with

unob =
     0

See Also obsvf Compute the observability staircase form
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1obsvfPurpose Compute the observability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C,tol)

Description If the observability matrix of (A,C) has rank , where n is the size of A, then 
there exists a similarity transformation such that

where  is unitary and the transformed system has a staircase form with the 
unobservable modes, if any, in the upper left corner.

where  is observable, and the eigenvalues of  are the unobservable 
modes.

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system 
with matrices A, B, and C into the observability staircase form Abar, Bbar, and 
Cbar, as described above. T is the similarity transformation matrix and k is a 
vector of length n, where n is the number of states in A. Each entry of k 
represents the number of observable states factored out during each step of the 
transformation matrix calculation [1]. The number of nonzero elements in k 
indicates how many iterations were necessary to calculate T, and sum(k) is the 
number of states in , the observable portion of Abar.

obsvf(A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to 
10*n*norm(a,1)*eps.

Example Form the observability staircase form of

A =
     1     1
     4    -2

B =

r n≤

A TATT,= B TB,= C CTT
=

T

A
Ano A12

0 Ao

,= B
Bno

Bo

,= C 0 Co=

Co Ao,( ) Ano

Ao
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     1    -1
     1    -1

C =
     1     0
     0     1

by typing

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)

Abar =
     1     1
     4    -2
Bbar =
     1     1
     1    -1
Cbar =
     1     0
     0     1
T =
     1     0
     0     1
k =
     2     0

Algorithm obsvf is an M-file that implements the Staircase Algorithm of [1] by calling 
ctrbf and using duality.

 References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 
1970.

See Also ctrbf Compute the controllability staircase form
obsv Calculate the observability matrix
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1ord2Purpose Generate continuous second-order systems

Syntax [A,B,C,D] = ord2(wn,z)
[num,den] = ord2(wn,z)

Description [A,B,C,D] = ord2(wn,z) generates the state-space description (A,B,C,D) of 
the second-order system

given the natural frequency wn ( ) and damping factor z ( ). Use ss to turn 
this description into a state-space object.

[num,den] = ord2(wn,z) returns the numerator and denominator of the 
second-order transfer function. Use tf to form the corresponding transfer 
function object.

Example To generate an LTI model of the second-order transfer function with damping 
factor  and natural frequency , type

[num,den] = ord2(2.4,0.4)

num =
     1
den =
    1.0000    1.9200    5.7600

sys = tf(num,den)

Transfer function:
         1
-------------------
s^2 + 1.92 s + 5.76

See Also rss Generate random stable continuous models
ss Create a state-space LTI model
tf Create a transfer function LTI model

h s( ) 1

s2 2ζωns ωn
2

+ +
---------------------------------------------=

ωn ζ

ζ 0.4= ωn 2.4 rad/sec.=
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1lti/orderPurpose LTI model order 

Syntax ns = order(sys)

Description ns = order(sys) returns the model order ns. The order of an LTI model is the 
number of poles (for transfer functions) or the number of states (for state-space 
models).

For LTI arrays, ns is an array of the same size listing the orders of each model 
in sys.

order(sys) is an overloaded method that accepts SS, TF, and ZPK models. 

See Also pole Computes the poles of LTI models
balred Model order reduction
ltimodels Help on LTI models
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1padePurpose Compute the Padé approximation of models with time delays

Syntax [num,den] = pade(T,N)
pade(T,N)

sysx = pade(sys,N)
sysx = pade(sys,NI,NO,Nio)

Description pade approximates time delays by rational LTI models. Such approximations 
are useful to model time delay effects such as transport and computation 
delays within the context of continuous-time systems. The Laplace transform 
of an time delay of  seconds is . This exponential transfer function 
is approximated by a rational transfer function using the Padé approximation 
formulas [1].

[num,den] = pade(T,N) returns the Nth-order (diagonal) Padé approximation 
of the continuous-time I/O delay  in transfer function form. The row 
vectors num and den contain the numerator and denominator coefficients in 
descending powers of . Both are Nth-order polynomials.

When invoked without output arguments,

pade(T,N)

plots the step and phase responses of the Nth-order Padé approximation and 
compares them with the exact responses of the model with I/O delay T. Note 
that the Padé approximation has unit gain at all frequencies.

sysx = pade(sys,N) produces a delay-free approximation sysx of the 
continuous delay system sys. All delays are replaced by their Nth-order Padé 
approximation. See Time Delays for details on LTI models with delays.

sysx = pade(sys,NI,NO,Nio) specifies independent approximation orders for 
each input, output, and I/O delay. These approximation orders are given by the 
arrays of integers NI, NO, and Nio, such that:

• NI(j) is the approximation order for the j-th input channel.

• NO(i) is the approximation order for the i-th output channel.

• Nio(i,j) is the approximation order for the I/O delay from input j to output 
i.

T sT–( )exp

sT–( )exp

s
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You can use scalar values to specify uniform approximation orders, and [] if 
there are no input, output, or I/O delays.

Example Compute a third-order Padé approximation of a 0.1 second I/O delay and 
compare the time and frequency responses of the true delay and its 
approximation. To do this, type

pade(0.1,3)

Limitations High-order Padé approximations produce transfer functions with clustered 
poles. Because such pole configurations tend to be very sensitive to 
perturbations, Padé approximations with order N>10 should be avoided.

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins 
University Press, Baltimore, 1989, pp. 557–558.
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See Also c2d Discretization of continuous system
delay2z Changes transfer functions of discrete-time LTI models 

with delays to rational functions or absorbs FRD delays 
into the frequency response phase information
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1parallelPurpose Parallel connection of two LTI models

Syntax sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)

Description parallel connects two LTI models in parallel. This function accepts any type 
of LTI model. The two systems must be either both continuous or both discrete 
with identical sample time. Static gains are neutral and can be specified as 
regular matrices.

sys = parallel(sys1,sys2) forms the basic parallel connection shown below.

This command is equivalent to the direct addition

sys = sys1 + sys2

(See Addition and Subtraction for details on LTI system addition.)

sys1

sys2

u y
+

+

sys
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sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more general 
parallel connection.

The index vectors inp1 and inp2 specify which inputs  of sys1 and which 
inputs  of sys2 are connected. Similarly, the index vectors out1 and out2 
specify which outputs  of sys1 and which outputs  of sys2 are summed. 
The resulting model sys has  as inputs and  as 
outputs.

Example See Kalman Filtering for an example.

See Also append Append LTI systems
feedback Feedback connection
series Series connection

sys1

sys2

+
+

sys

u

u2

u1

y2

y1

y

z1
v1

z2
v2

u1
u2

y1 y2
v1  u  v2;;[ ] z1  y  z2;;[ ]



place

1-209

1placePurpose Pole placement design

Syntax K = place(A,B,p)
[K,prec,message] = place(A,B,p)

Description Given the single- or multi-input system

and a vector p of desired self-conjugate closed-loop pole locations, place 
computes a gain matrix K such that the state feedback  places the 
closed-loop poles at the locations p. In other words, the eigenvalues of  
match the entries of p (up to the ordering).

K = place(A,B,p) computes a feedback gain matrix K that achieves the 
desired closed-loop pole locations p, assuming all the inputs of the plant are 
control inputs. The length of p must match the row size of A. place works for 
multi-input systems and is based on the algorithm from [1]. This algorithm 
uses the extra degrees of freedom to find a solution that minimizes the 
sensitivity of the closed-loop poles to perturbations in  or .

[K,prec,message] = place(A,B,p) also returns prec, an estimate of how 
closely the eigenvalues of  match the specified locations p (prec 
measures the number of accurate decimal digits in the actual closed-loop 
poles). If some nonzero closed-loop pole is more than 10% off from the desired 
location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix 
and substituting C' for B.

l = place(A',C',p).'

Example Consider a state-space system (a,b,c,d) with two inputs, three outputs, and 
three states. You can compute the feedback gain matrix needed to place the 
closed-loop poles at p = [1.1 23 5.0] by

p = [1 1.23 5.0];
K = place(a,b,p)

x· Ax Bu+=

u Kx–=
A BK–

A B

A BK–
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Algorithm place uses the algorithm of [1] which, for multi-input systems, optimizes the 
choice of eigenvectors for a robust solution. We recommend place rather than 
acker even for single-input systems. 

In high-order problems, some choices of pole locations result in very large 
gains. The sensitivity problems attached with large gains suggest caution in 
the use of pole placement techniques. See [2] for results from numerical testing.

References [1] Kautsky, J. and N.K. Nichols, “Robust Pole Assignment in Linear State 
Feedback,” Int. J. Control, 41 (1985), pp. 1129–1155.

[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and 
Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA, 
Sept. 1984.

See Also acker Pole placement using Ackermann’s formula
lqr State-feedback LQ regulator design
rlocus Root locus design
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1polePurpose Compute the poles of an LTI system

Syntax p = pole(sys)

Description pole computes the poles p of the SISO or MIMO LTI model sys.

Algorithm For state-space models, the poles are the eigenvalues of the  matrix, or the 
generalized eigenvalues of  in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the 
denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are 
computed as the union of the poles for each SISO entry. If some columns or 
rows have a common denominator, the roots of this denominator are counted 
only once.

Limitations Multiple poles are numerically sensitive and cannot be computed to high 
accuracy. A pole  with multiplicity  typically gives rise to a cluster of 
computed poles distributed on a circle with center  and radius of order

where  is the relative machine precision (eps).

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pzmap Pole-zero map
zero Compute (transmission) zeros

A
A λE–

λ m
λ

ρ ε1 m⁄≈

ε
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1pzmapPurpose Compute the pole-zero map of an LTI model

Syntax pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

Description pzmap(sys) plots the pole-zero map of the continuous- or discrete-time LTI 
model sys. For SISO systems, pzmap plots the transfer function poles and zeros. 
For MIMO systems, it plots the system poles and transmission zeros. The poles 
are plotted as x’s and the zeros are plotted as o’s.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map of several LTI models on 
a single figure. The LTI models can have different numbers of inputs and 
outputs and can be a mix of continuous and discrete systems.

When invoked with left-hand arguments,

[p,z] = pzmap(sys)

returns the system poles and (transmission) zeros in the column vectors p and 
z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio 
and natural frequency in the - or -plane.

Example Plot the poles and zeros of the continuous-time system.

H = tf([2 5 1],[1 2 3]); sgrid

s z

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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pzmap(H)

Algorithm pzmap uses a combination of pole and zero.

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pole Compute system poles
rlocus Root locus
sgrid, zgrid Plot lines of constant damping and natural frequency
zero Compute system (transmission) zeros
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1pzplotPurpose Compute the pole-zero map of an LTI model and return the plot handle

Syntax h = pzplot(sys)

h = pzplot(sys1,sys2,...) 
h = pzplot(AX,...)
h = pzplot(..., plotoptions)

Description h = pzplot(sys) computes the poles and (transmission) zeros of the LTI model 
sys and plots them in the complex plane.  The poles are plotted as x’s and the 
zeros are plotted as o’s.  It also returns the plot handle h. You can use this 
handle to customize the plot with the getoptions and setoptions commands.  
Type

help pzoptions 

for a list of available plot options.

pzplot(sys1,sys2,...) shows the poles and zeros of multiple LTI models 
sys1,sys2,... on a single plot.  You can specify distinctive colors for each model, 
as in 

pzplot(sys1,'r',sys2,'y',sys3,'g') 

pzplot(AX,...) plots into the axes with handle AX.

pzplot(..., plotoptions) plots the poles and zeros with the options specified 
in plotoptions. Type

help pzoptions 

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio 
and natural frequency in the s- or z-plane.

For arrays sys of LTI models, pzmap plots the poles and zeros of each model in 
the array on the same diagram.

Example Use the plot handle to change the color of the plot’s title.

sys = rss(3,2,2);
h = rlocusplot(sys);
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p = getoptions(h); % Get options for plot.
p.Title.Color = [1,0,0]; % Change title color in options.
setoptions(h,p); % Apply options to plot.

See Also getoptions Get plot options
pzmap Compute the pole-zero map of an LTI model
setoptions Set plot options
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1regPurpose Form regulator given state-feedback and estimator gains

Syntax rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)

Description rsys = reg(sys,K,L) forms a dynamic regulator or compensator rsys given a 
state-space model sys of the plant, a state-feedback gain matrix K, and an 
estimator gain matrix L. The gains K and L are typically designed using pole 
placement or LQG techniques. The function reg handles both continuous- and 
discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are 
measured. The regulator rsys is obtained by connecting the state-feedback law 

 and the state estimator with gain matrix L (see estim). For a plant 
with equations

 

this yields the regulator

u K– x=

x· Ax Bu+=

y Cx Du+=

x̂
·

A LC– B LD–( )K– x̂ Ly+=

u Kx̂–=
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This regulator should be connected to the plant using positive feedback.

rsys = reg(sys,K,L,sensors,known,controls) handles more general 
regulation problems where:

• The plant inputs consist of controls , known inputs , and stochastic 
inputs .

• Only a subset  of the plant outputs is measured.

The index vectors sensors, known, and controls specify , , and  as 
subsets of the outputs and inputs of sys. The resulting regulator uses  
as inputs to generate the commands  (see figure below).

u

y

x̂
K–

Regulator 

u

Plant

y

State
Estimator

u ud
w

y

y ud u
ud ; y[ ]

u

x̂

u

y

ud K– u

Regulator rsys

Estimator

(gain L)
(known)

(sensors)
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Example Given a continuous-time state-space model

sys = ss(A,B,C,D) 

with seven outputs and four inputs, suppose you have designed:

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as 
control inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as 
sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete 
regulation system by

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys,K,L,sensors,known,controls)

See Also estim Form state estimator given estimator gain
kalman Kalman estimator design
lqgreg Form LQG regulator
lqr, dlqr State-feedback LQ regulator
place Pole placement
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1reshapePurpose Change the shape of an LTI array

Syntax sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

Description sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1 
s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by...-sk array of LTI 
models. Equivalently, sys = reshape(sys,[s1 s2 ... sk]) reshapes the LTI 
array sys into an s1-by-s2-by...-sk array of LTI models. With either syntax, 
there must be s1*s2*...*sk models in sys to begin with.

Example sys = rss(4,1,1,2,3);
size(sys)

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

sys1 = reshape(sys,6);
size(sys1)

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

See Also ndims Provide the number of dimensions of an LTI array
size Provide the lengths of each dimension of an LTI array
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1rlocusPurpose Evans root locus

Syntax rlocus(sys)
rlocus(sys,k)
rlocus(sys1,sys2,...)

[r,k] = rlocus(sys)
r = rlocus(sys,k)

Description rlocus computes the Evans root locus of a SISO open-loop model. The root 
locus gives the closed-loop pole trajectories as a function of the feedback gain 

 (assuming negative feedback). Root loci are used to study the effects of 
varying feedback gains on closed-loop pole locations. In turn, these locations 
provide indirect information on the time and frequency responses.

rlocus(sys) calculates and plots the root locus of the open-loop SISO model 
sys. This function can be applied to any of the following negative feedback loops 
by setting sys appropriately.

If sys has transfer function

k

G

k

G

Fk

sys = G sys = F * G

C

k

G

sys = G * C

–

–

–

+

+

+
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the closed-loop poles are the roots of

rlocus adaptively selects a set of positive gains  to produce a smooth plot. 
Alternatively,

rlocus(sys,k)

uses the user-specified vector k of gains to plot the root locus.

rlocus(sys1,sys2,...) draws the root loci of multiple LTI models sys1, 
sys2,... on a single plot. You can specify a color, line style, and marker for 
each model, as in 

rlocus(sys1,'r',sys2,'y:',sys3,'gx').

When invoked with output arguments,

[r,k] = rlocus(sys)
r = rlocus(sys,k)

return the vector k of selected gains and the complex root locations r for these 
gains. The matrix r has length(k) columns and its jth column lists the 
closed-loop roots for the gain k(j).

Example Find and plot the root-locus of the following system.

h = tf([2 5 1],[1 2 3]);

h s( ) n s( )
d s( )
-----------=

d s( ) k n s( )+ 0=

k

h s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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rlocus(h)

You can use the right-click menu for rlocus to add grid lines, zoom in or out, 
and invoke the Property Editor to customize the plot. Also, click anywhere on 
the curve to activate a data marker that displays the gain value, pole, damping, 
overshoot, and frequency at the selected point.

See Also pole System poles
pzmap Pole-zero map
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1rlocusplotPurpose Calculate the root locus and return the plot handle

Syntax h = rlocusplot(sys)

h = rlocusplot(sys,k)
h = rlocusplot(sys1,sys2,...)
h = rlcousplot(AX,...)
h = rlocusplot(..., plotoptions)

Description h = rlocusplot(sys) computes and plots the root locus of the single-input, 
single-output LTI model sys. It also returns the plot handle h. You can use this 
handle to customize the plot with the getoptions and setoptions commands. 
Type 

help pzoptions 

for a list of available plot options.

See rlocus for a discussion of the feedback structure and algorithms used to 
calculate the root locus.

rlocusplot(sys,k) uses a user-specified vector k of gain values. 

rlocusplot(sys1,sys2,...) draws the root loci of multiple LTI models sys1, 
sys2,... on a single plot. You can specify a color, line style, and marker for each 
model, as in 

rlocusplot(sys1,'r',sys2,'y:',sys3,'gx')

rlocusplot(AX,...) plots into the axes with handle AX.

rlocusplot(..., plotoptions) plots  the root locus with the options specified 
in plotoptions. Type

help pzoptions 

for more details.

Example Use the plot handle to change the title of the plot.

sys = rss(3,2,2);
h = rlocusplot(sys);
p = getoptions(h); % Get options for plot.
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p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to plot.

See Also getoptions Get plot options
rlocus Calculate root loci of LTI models
setoptions Set plot options



rss

1-225

1rssPurpose Generate stable random continuous test models

Syntax sys = rss(n)
sys = rss(n,p)
sys = rss(n,p,m)
sys = rss(n,p,m,s1,...,sn)

Description rss(n) produces a stable random n-th order model with one input and one 
output and returns the model in the state-space object sys.

rss(n,p) produces a random nth order stable model with one input and p 
outputs, and rss(n,m,p) produces a random n-th order stable model with m 
inputs and p outputs. The output sys is always a state-space model.

rss(n,p,m,s1,...,sn)produces an s1-by-...-by-sn array of random n-th 
order stable state-space models with m inputs and p outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function, 
frequency response, or zero-pole-gain form.

Example Obtain a stable random continuous LTI model with three states, two inputs, 
and two outputs by typing

sys = rss(3,2,2)

a = 
                        x1           x2           x3
           x1     -0.54175      0.09729      0.08304
           x2      0.09729     -0.89491      0.58707
           x3      0.08304      0.58707     -1.95271
 
b = 
                        u1           u2
           x1     -0.88844     -2.41459
           x2            0     -0.69435
           x3     -0.07162     -1.39139
 
c = 
                        x1           x2           x3
           y1      0.32965      0.14718            0
           y2      0.59854     -0.10144      0.02805
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d = 
                        u1           u2
           y1     -0.87631     -0.32758
           y2            0            0
 
Continuous-time system.

See Also drss Generate stable random discrete test models
frd Convert LTI systems to frequency response form
tf Convert LTI systems to transfer function form
zpk Convert LTI systems to zero-pole-gain form
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1seriesPurpose Series connection of two LTI models

Syntax sys = series(sys1,sys2)
sys = series(sys1,sys2,outputs1,inputs2)

Description series connects two LTI models in series. This function accepts any type of 
LTI model. The two systems must be either both continuous or both discrete 
with identical sample time. Static gains are neutral and can be specified as 
regular matrices.

sys = series(sys1,sys2) forms the basic series connection shown below.

This command is equivalent to the direct multiplication

sys = sys2 * sys1

See Multiplication for details on multiplication of LTI models.

sys = series(sys1,sys2,outputs1,inputs2) forms the more general series 
connection.

sys1 sys2u y

sys

sys1

sys2

y1 u2

v2

z1

sys

u

y
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The index vectors outputs1 and inputs2 indicate which outputs  of sys1 and 
which inputs  of sys2 should be connected. The resulting model sys has  
as input and  as output. 

Example Consider a state-space system sys1 with five inputs and four outputs and 
another system sys2 with two inputs and three outputs. Connect the two 
systems in series by connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of 
sys2.

outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs1,inputs2)

See Also append Append LTI systems
feedback Feedback connection
parallel Parallel connection

y1
u2 u
y
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1setPurpose Set or modify LTI model properties

Syntax set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)

set(sys,'Property')
set(sys)

Description set is used to set or modify the properties of an LTI model (see “LTI Properties” 
for background on LTI properties). Like its Handle Graphics® counterpart, set 
uses property name/property value pairs to update property values.

set(sys,'Property',Value) assigns the value Value to the property of the 
LTI model sys specified by the string 'Property'. This string can be the full 
property name (for example, 'UserData') or any unambiguous case-insensitive 
abbreviation (for example, 'user'). The specified property must be compatible 
with the model type. For example, if sys is a transfer function, Variable is a 
valid property but StateName is not (see “Model-Specific Properties” for 
details).

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple 
property values with a single statement. Each property name/property value 
pair updates one particular property.

set(sys,'Property') displays admissible values for the property specified by 
'Property'. See “Property Values” below for an overview of legitimate LTI 
property values.

set(sys) displays all assignable properties of sys and their admissible values.

Example Consider the SISO state-space model created by

sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque, reset the 
 matrix to zero, and store its DC gain in the 'Userdata' property by

set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))

D
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Note that set does not require any output argument. Check the result with get 
by typing

get(sys)

a = 1
        b = 2
        c = 3
        d = 0
        e = []
        Nx = 1
        StateName = {''}
        Ts = 0
        InputDelay = 0.1
        OutputDelay = 0
        ioDelay = 0
        InputName = {'torque'}
        OutputName = {''}
        InputGroup = {0x2 cell}
        OutputGroup = {0x2 cell}
        Notes = {}
        UserData = -6

Property 
Values

The following table lists the admissible values for each LTI property.  and 
 denotes the number of inputs and outputs of the underlying LTI model. For 

K-dimensional LTI arrays, let  denote the array dimensions.

Nu
Ny

S1 S2 … SK, , ,
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Table 1-2:  LTI Properties

Property Name Admissible Property Values

Ts • 0 (zero) for continuous-time systems

• Sample time in seconds for discrete-time systems

• -1 or [] for discrete systems with unspecified sample time

Note: Resetting the sample time property does not alter the model data. Use 
c2d, d2c, or d2d for discrete/continuous and discrete/discrete conversions.

ioDelay Input/Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when all I/O pairs have the same delay

• -by-  matrix to specify independent delay times for each I/O pair

• Array of size -by- -by- -by-. . .-by-  to specify different I/O delays 
for each model in an LTI array.

InputDelay Input delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when  or system has uniform input delay

• Vector of length  to specify independent delay times for each input 
channel

• Array of size -by- -by- -by-. . .-by-  to specify different input 
delays for each model in an LTI array.

Ny Nu

Ny Nu S1 Sn

Nu 1=

Nu

Ny Nu S1 Sn
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OutputDelay Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when  or system has uniform output delay

• Vector of length  to specify independent delay times for each output 
channel

• Array of size -by- -by- -by-. . .-by-  to specify different output 
delays for each model in an LTI array.

Notes String, array of strings, or cell array of strings

UserData Arbitrary MATLAB variable

InputName • String for single-input systems, for example, 'thrust'

• Cell vector of strings for multi-input systems (with as many cells as inputs), 
for example, {'u';'w'} for a two-input system

• Padded array of strings with as many rows as inputs, for example, 
['rudder ' ; 'aileron']

OutputName Same as InputName (with “input” replaced by “output”)

InputGroup Cell array. See “Input Groups and Output Groups.”

OutputGroup Same as InputGroup 

Table 1-2:  LTI Properties (Continued)

Property Name Admissible Property Values

Ny 1=

Ny

Ny Nu S1 Sn
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Table 1-3:  State-Space Model Properties

Property Name Admissible Property Values

StateName Same as InputName (with Input replaced by State)

a, b, c, d, e Real- or complex-valued state-space matrices (multidimensional arrays, in 
the case of LTI arrays) with compatible dimensions for the number of 
states, inputs, and outputs. See “The Size of LTI Array Data for SS 
Models.”

Nx • Scalar integer representing the number of states for single LTI models or 
LTI arrays with the same number of states in each model

• -by- -by- -dimensional array of integers when all of the models of 
an LTI array do not have the same number of states
S1 … SK

Table 1-4:  TF Model Properties

Property Name Admissible Property Values

num, den • Real- or complex-valued row vectors for the coefficients of the numerator or 
denominator polynomials in the SISO case. List the coefficients in 
descending powers of the variable  or  by default, and in ascending 
powers of  when the Variable property is set to 'q' or 'z^-1' (see 
note below).

• -by-  cell arrays of real- or complex-valued row vectors in the MIMO 
case, for example,
{[1 2];[1 0 3]} for a two-output/one-input transfer function

• -by- -by- -by- -by- -dimensional real- or complex-valued cell 
arrays for MIMO LTI arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

s z
q z 1–

=

Ny Nu

Ny Nu S1 … SK



set

1-234

Remark For discrete-time transfer functions, the convention used to represent the 
numerator and denominator depends on the choice of variable (see the tf entry 
for details). Like tf, the syntax for set changes to remain consistent with the 
choice of variable. For example, if the Variable property is set to 'z' (the 
default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

Table 1-5:  ZPK Model Properties

Property Name Admissible Property Values

z, p • Vectors of zeros and poles (either real- or complex-valued) in SISO case

• -by-  cell arrays of vectors (entries are real- or complex valued) in 
MIMO case, for example, z = {[],[-1 0]} for a model with two inputs and 
one output

• -by- -by- -by- -by- -dimensional cell arrays for MIMO LTI 
arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

Ny Nu

Ny Nu S1 … SK

Table 1-6:  FRD Model Properties

Property Name Admissible Property Values

Frequency Real-valued vector of length -by-1, where  is the number of 
frequencies

Response • -by- -by- -dimensional array of complex data for single LTI models

• -by- -by- -by- -by- -by- -dimensional array for LTI arrays

Units String 'rad/s' (default), or 'Hz' 

Nf Nf

Ny Nu Nf

Ny Nu Nf S1 … SK
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However, if you change the Variable to 'z^-1' (or 'q') by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials  
and  and produces:

Note  Because the resulting transfer functions are different, make sure to use 
the convention consistent with your choice of variable.

See Also get Access/query LTI model properties
frd Specify a frequency response data model
ss Specify a state-space model
tf Specify a transfer function
zpk Specify a zero-pole-gain model

h z( ) z 2+
z2 3z 4+ +
----------------------------=

1 2z 1–
+

1 3z 1– 4z 2–
+ +

h z 1–( ) 1 2z 1–
+

1 3z 1– 4z 2–
+ +

---------------------------------------- zh z( )= =
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1setoptionsPurpose Set plot options for response plots

Syntax setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)

Description setoptions(h, PlotOpts) sets preferences for response plot using the plot 
handle. h is the plot handle, PlotOpts is a plot options handle containing 
information about plot options.

There are two ways to create a plot options handle:

• Use getoptions, which accepts a plot handle and returns a plot options 
handle.
p = getoptions(h)

• Create a default plot options handle using one of the following commands:

- bodeoptions — Bode plots

- hsvoptions — Hankel singular values plots

- nicholsoptions — Nichols plots

- nyquistoptions — Nyquist plots

- pzoptions — Pole/zero plots

- sigmaoptions — Sigma plots

- timeoptions — Time plots (step, initial, impulse, etc.)

For example,

p = bodeoptions

returns a plot options handle for Bode plots. 

setoptions(h, 'Property1', 'value1', ...) assigns values to property 
pairs instead of using PlotOpts. To find out what properties and values are 
available, type help <function>options. For example, for Bode plots type

help bodeoptions

setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot 
properties as defined in @PlotOptions, and then overrides any properties 
governed by the specified property/value pairs.
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Examples To change frequency units, first create a Bode plot.

sys=tf(1,[1 1]);
h-bodeplot(sys) % Create a Bode plot with plot handle h.

Now, change the frequency units from rad/s to Hz.

p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.
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setoptions(h,p); % Apply plot options to the Bode plot and 
% render.

To change the frequency units using property/value pairs, use this code.

sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');

The result is the same as the first example.

See Also getoptions Get a plot options handle

The frequency units 
are now Hz.



sgrid

1-239

1sgridPurpose Generate an s-plane grid of constant damping factors and natural frequencies

Syntax sgrid
sgrid(z,wn)

Description sgrid generates, for pole-zero and root locus plots, a grid of constant damping 
factors from zero to one in steps of 0.1 and natural frequencies from zero to 10 
rad/sec in steps of one rad/sec, and plots the grid over the current axis. If the 
current axis contains a continuous s-plane root locus diagram or pole-zero map, 
sgrid draws the grid over the plot.

sgrid(z,wn) plots a grid of constant damping factor and natural frequency 
lines for the damping factors and natural frequencies in the vectors z and wn, 
respectively. If the current axis contains a continuous s-plane root locus 
diagram or pole-zero map, sgrid(z,wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the 
same s-plane grid.

Example Plot s-plane grid lines on the root locus for the following system.

You can do this by typing

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1
---------------
 s^2 + 2 s + 3

rlocus(H)
sgrid

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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See Also pzmap Plot pole-zero map
rlocus Plot root locus
zgrid Generate z-plane grid lines
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1sigmaPurpose Singular values of the frequency response of LTI models

Syntax sigma(sys)
sigma(sys,w)
sigma(sys,w,type)

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,w)
sigma(sys1,sys2,...,sysN,w,type)
sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[sv,w] = sigma(sys)
sv = sigma(sys,w)

Description sigma calculates the singular values of the frequency response of an LTI model. 
For an FRD model, sys, sigma computes the singular values of sys.Response 
at the frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models 
with transfer function , sigma computes the singular values of  as 
a function of the frequency . For discrete-time TF, SS, or ZPK models with 
transfer function  and sample time , sigma computes the singular 
values of

for frequencies  between 0 and the Nyquist frequency . 

The singular values of the frequency response extend the Bode magnitude 
response for MIMO systems and are useful in robustness analysis. The 
singular value response of a SISO system is identical to its Bode magnitude 
response. When invoked without output arguments, sigma produces a singular 
value plot on the screen.

sigma(sys) plots the singular values of the frequency response of an arbitrary 
LTI model sys. This model can be continuous or discrete, and SISO or MIMO. 
The frequency points are chosen automatically based on the system poles and 
zeros, or from sys.frequency if sys is an FRD.

sigma(sys,w) explicitly specifies the frequency range or frequency points to be 
used for the plot. To focus on a particular frequency interval [wmin,wmax], set 

H s( ) H jω( )
ω

H z( ) Ts

H e
jωTs( )

ω ωN π Ts⁄=
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w = {wmin,wmax}. To use particular frequency points, set w to the 
corresponding vector of frequencies. Use logspace to generate logarithmically 
spaced frequency vectors. The frequencies must be specified in rad/sec. 

sigma(sys,[],type) or sigma(sys,w,type) plots the following modified 
singular value responses:

These options are available only for square systems, that is, with the same 
number of inputs and outputs.

To superimpose the singular value plots of several LTI models on a single 
figure, use

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,[],type) % modified SV plot
sigma(sys1,sys2,...,sysN,w) % specify frequency range/grid

The models sys1,sys2,...,sysN need not have the same number of inputs 
and outputs. Each model can be either continuous- or discrete-time. You can 
also specify a distinctive color, linestyle, and/or marker for each system plot 
with the syntax

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with output arguments,

[sv,w] = sigma(sys)
sv = sigma(sys,w)

return the singular values sv of the frequency response at the frequencies w. 
For a system with Nu input and Ny outputs, the array sv has min(Nu,Ny) rows 
and as many columns as frequency points (length of w). The singular values at 
the frequency w(k) are given by sv(:,k).

Example Plot the singular value responses of

type = 1 Singular values of the frequency response , where  is 
the frequency response of sys.

type = 2 Singular values of the frequency response .

type = 3 Singular values of the frequency response .

H 1– H

I H+

I H 1–
+
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and .

You can do this by typing

H = [0 tf([3 0],[1 1 10]) ; tf([1 1],[1 5]) tf(2,[1 6])]

subplot(211)
sigma(H)
subplot(212)
sigma(H,[],2)

H s( )
0    3s

s2 s 10+ +
---------------------------

s 1+
s 5+
------------    2

s 6+
------------

=

I H s( )+
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Algorithm sigma uses the svd function in MATLAB to compute the singular values of a 
complex matrix.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot
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1sigmaplotPurpose Plot singular values of the frequency response and return the plot handle

Syntax h = sigmaplot(sys)

h = sigmaplot(sys,{wmin,wmax})
h = sigmaplot(sys,w)
h = sigmaplot(sys,w,type)
h = sigmaplot(sys,[],type)
h = sigmaplot(AX,...)
h = sigmaplot(..., plotoptions)

Discussion h = sigmaplot(sys) produces a singular value (SV) plot of the frequency 
response of the LTI model sys (created with tf, zpk, ss, or frd). It also returns 
the plot handle h. You can use this handle to customize the plot with the 
getoptions and setoptions commands. Type 

help nicholsoptions 

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode 
for details on the notion of frequency in discrete time.

sigmaplot(sys,{wmin,wmax}) draws the SV plot for frequencies ranging 
between wmin and wmax (in rad/s).

sigmaplot(sys,w) uses the user-supplied vector w of frequencies, in rad/s, at 
which the frequency response is to be evaluated. See logspace to generate 
logarithmically spaced frequency vectors.

sigmaplot(sys,w,TYPE) or sigmaplot(sys,[],TYPE) draws the following 
modified SV plots depending on the value of TYPE:

           TYPE = 1     -->     SV of  inv(SYS)

           TYPE = 2     -->     SV of  I + SYS

           TYPE = 3     -->     SV of  I + inv(SYS) 

sys should be a square system when using this syntax.

sigmaplot(AX,...) plots into the axes with handle AX.
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sigmaplot(..., plotoptions) plots the singular values with the options 
specified in plotoptions. Type

help sigmaoptions 

for more details.

Example Use the plot handle to change the units to Hz.

sys = rss(5);
h = sigmaplot(sys);
% Change units to Hz. 
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
setoptions Set plot options
sigma Singular value plot of LTI models
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1sisotoolPurpose Initialize the SISO Design Tool

Syntax sisotool
sisotool(plant)
sisotool(plant,comp)
sisotool(views)
sisotool(views,plant,comp,sensor,prefilt)
sisotool(views,plant,comp,options)

Description When invoked without input arguments, sisotool opens a SISO Design GUI 
for interactive compensator design. This GUI allows you to design a 
single-input/single-output (SISO) compensator using root locus and Bode 
diagram techniques.

By default, the SISO Design Tool:

• Opens root locus and open-loop Bode diagrams.

• Places the compensator, C, in the forward path in series with the plant, G.

• Assumes the prefilter, F, and the sensor, H, are unity gains. Once you specify 
G and H, they are fixed in the feedback structure. 
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This picture shows the SISO Design Tool.

sisotool(plant) opens the SISO Design Tool, imports plant, and initializes 
the plant model G to plant. The workspace variable plant can be any SISO 
LTI model created with either ss, tf, or zpk.

sisotool(plant,comp) initializes the plant model G to plant, the 
compensator C to comp. 

sisotool(plant,comp,sensor,prefilt) initializes the plant G to plant, 
compensator C to comp, sensor H to sensor, and the prefilter F to prefilt. All 
arguments must be SISO LTI objects.

sisotool(views) or sisotool(views,plant,comp) specifies the initial 
configuration of the SISO Design Tool. The argument views can be any of the 
following strings (or combination thereof):

Compensator 
description: The default 
compensator is V=1.

Use the right-click menu to 
manipulate the 
compensator and the 
plots’ appearances. 
Right-click in any plot 
region to open the menu.

The status bar provides 
useful information.

Use the menu bar to import/export models, and to 
edit them. Right-click menu functionality is available 
under the Edit menu.

The feedback structure: Click on FS to change the feedback 
structure. Click on +/- to change the feedback sign.
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• 'rlocus' — Root Locus plot

• 'bode' — Bode diagrams of the open-loop response

• 'nichols' — Nichols plot

• 'filter' — Bode diagrams of the prefilter F and the closed-loop response 
from the command into F to the output of the compensator G (see the 
feedback structure figure below) 

For example 

        sisotool('bode')

opens a SISO Design Tool with only the Bode Diagrams on. 

sisotool(plant,comp,options) allows you to override the default 
compensator location and feedback sign by using an extra input argument 
options with the following fields:

• options.Location = 'forward' — Compensator in the forward loop

• options.Location = 'feedback' — Compensator in the feedback loop

• options.Sign = −1 — Negative feedback

• options.Sign = 1 — Positive feedback

You can design compensators for one of the following two feedback loop 
configurations. 

The SISO Design Tool Supports Two Feedback Structures.

For more details on the SISO Design Tool, see “Designing Compensators” in 
the Getting Started documentation for the Control System Toolbox.

See Also bode Bode response
ltiview Open an LTI Viewer

Compensator in the Compensator in the
Feedback PathForward Path
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rlocus Root locus
nichols Nichols response
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1sizePurpose Provide the output/input/array dimensions of LTI models, the model order of 
TF, SS, and ZPK models, and the number of frequencies of FRD models

Syntax size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Ns = size(sys,'order')
Nf = size(sys,'frequency')

Description When invoked without output arguments, size(sys) returns a vector of the 
number of outputs and inputs for a single LTI model. The lengths of the array 
dimensions are also included in the response to size when sys is an LTI array. 
size is the overloaded version of the MATLAB function size for LTI objects.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single LTI model sys with Ny outputs and 
Nu inputs

• The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array 
of LTI models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys 
is an LTI array.

Ns = size(sys,'order') returns the model order of a TF, SS, or ZPK model. This 
is the same as the number of states for state-space models. When sys is an LTI 
array, ns is the maximum order of all of the models in the LTI array.

Nf = size(sys,'frequency') returns the number of frequencies when sys is 
an FRD. This is the same as the length of sys.frequency.

Example Consider the random LTI array of state-space models

sys = rss(5,3,2,3);

Its dimensions are obtained by typing 
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size(sys)

3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

See Also isempty Test if LTI model is empty
issiso Test if LTI model is SISO
ndims Number of dimensions of an LTI array



sminreal

1-253

1sminrealPurpose Perform model reduction based on structure

Syntax msys = sminreal(sys)

Description msys = sminreal(sys) eliminates the states of the state-space model sys that 
don’t affect the input/output response. All of the states of the resulting 
state-space model msys are also states of sys and the input/output response of 
msys is equivalent to that of sys. 

sminreal eliminates only structurally non minimal states, i.e., states that can 
be discarded by looking only at hard zero entries in the A, B, and C matrices. 
Such structurally nonminimal states arise, for example, when linearizing a 
Simulink model that includes some unconnected state-space or transfer 
function blocks.

Remark The model resulting from sminreal(sys) is not necessarily minimal, and may 
have a higher order than one resulting from minreal(sys). However, 
sminreal(sys) retains the state structure of sys, while, in general, 
minreal(sys) does not.

Example Suppose you concatenate two SS models, sys1 and sys2.

sys = [sys1,sys2];

This operation is depicted in the diagram below.

If you extract the subsystem sys1 from sys, with

sys(1,1)

+ y

u

v

sys1

sys2
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all of the states of sys, including those of sys2 are retained. To eliminate the 
unobservable states from sys2, while retaining the states of sys1, type

sminreal(sys(1,1))

See Also minreal Model reduction by removing 
unobservable/uncontrollable states or cancelling 
pole/zero pairs
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1ssPurpose Specify state-space models or convert an LTI model to state space

Syntax sys = ss(a,b,c,d)
sys = ss(a,b,c,d,Ts)
sys = ss(d)
sys = ss(a,b,c,d,ltisys)

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)
sys = ss(a,b,c,d,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys_ss = ss(sys)
sys_ss = ss(sys,'minimal')

Description ss is used to create real- or complex-valued state-space models (SS objects) or 
to convert transfer function or zero-pole-gain models to state space.

Creation of State-Space Models

sys = ss(a,b,c,d) creates the continuous-time state-space model

For a model with Nx states, Ny outputs, and Nu inputs:

• a is an Nx-by-Nx real- or complex-valued matrix.

• b is an Nx-by-Nu real- or complex-valued matrix.

• c is an Ny-by-Nx real- or complex-valued matrix.

• d is an Ny-by-Nu real- or complex-valued matrix.

The output sys is an SS model that stores the model data (see “State-Space 
Models” on page 2-14). If , you can simply set d to the scalar 0 (zero), 
regardless of the dimension.

sys = ss(a,b,c,d,Ts) creates the discrete-time model

x· Ax Bu+=

y Cx Du+=

D 0=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=
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with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample 
time unspecified.

sys = ss(d) specifies a static gain matrix  and is equivalent to

sys = ss([],[],[],d)

sys = ss(a,b,c,d,ltisys) creates a state-space model with generic LTI 
properties inherited from the LTI model ltisys (including the sample time). 
See “Generic Properties” on page 2-26 for an overview of generic LTI 
properties.

See “Building LTI Arrays” on page 4-12 for information on how to build arrays 
of state-space models.

Any of the previous syntaxes can be followed by property name/property value 
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the 
input names or some notes on the model history. See the set entry and the 
example below for details. Note that

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)

is equivalent to the sequence of commands.

sys = ss(a,b,c,d)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Conversion to State Space

sys_ss = ss(sys) converts an arbitrary TF or ZPK model sys to state space. 
The output sys_ss is an equivalent state-space model (SS object). This 
operation is known as state-space realization.

sys_ss = ss(sys,'minimal') produces a state-space realization with no 
uncontrollable or unobservable states. This is equivalent to sys_ss = 
minreal(ss(sys)).

Algorithm In the case of TF to SS model conversion, ss(sys_tf) returns a modified 
version of the controllable canonical form. It uses an algorithm similar to 

D
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tf2ss, but further rescales the state vector to compress the numerical range in 
state matrix A and to improve numerics in subsequent computations.

In the case of ZPK to SS conversion, ss(sys_zpk) uses direct form II structures 
as defined in signal processing texts. See “Discrete-Time Signal Processing” by 
Oppenheim and Schafer for details.

For example, in the following code, A and sys.a differ by a diagonal state 
transformation:

n=[1 1];
d=[1 1 10];
[A,B,C,D]=tf2ss(n,d);
sys=ss(tf(n,d));
A

A =

    -1   -10
     1     0

sys.a

ans =
    -1    -5

     2     0

See the balance or ssbal documentation for details.

Examples Example 1
The command

sys = ss(A,B,C,D,0.05,'statename',{'position' 'velocity'},...
'inputname','force',...
'notes','Created 10/15/96')

creates a discrete-time model with matrices  and sample time 0.05 
second. This model has two states labeled position and velocity, and one 
input labeled force (the dimensions of  should be consistent with 
these numbers of states and inputs). Finally, a note is attached with the date 
of creation of the model.

A B C D, , ,

A B C D, , ,



ss

1-258

Example 2
Compute a state-space realization of the transfer function

by typing

H = [tf([1 1],[1 3 3 2]) ; tf([1 0 3],[1 1 1])];
sys = ss(H);
size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

Note that the number of states is equal to the cumulative order of the SISO 
entries of H(s).

To obtain a minimal realization of H(s), type

sys = ss(H,'min');
size(sys)

State-space model with 2 outputs, 1 input, and 3 states.

The resulting state-space model order has order three, the minimum number 
of states needed to represent H(s). This can be seen directly by factoring H(s) 
as the product of a first order system with a second order one.

See Also dss Specify descriptor state-space models.
frd Specify FRD models or convert to an FRD.
get Get properties of LTI models.
set Set properties of LTI models.

H s( )

s 1+

s3 3s2 3s 2+ + +
-------------------------------------------

s2 3+

s2 s 1+ +
------------------------

=

H s( )
1

s 2+
------------ 0

0 1

s 1+

s2 s 1+ +
------------------------

s2 3+

s2 s 1+ +
------------------------

=
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ssdata Retrieve the  matrices of state-space model.
tf Specify transfer functions or convert to TF.
zpk Specify zero-pole-gain models or convert to ZPK.

A B C D, , ,
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1ss2ssPurpose State coordinate transformation for state-space models

Syntax sysT = ss2ss(sys,T)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), ss2ss performs the similarity 
transformation  on the state vector  and produces the equivalent 
state-space model sysT with equations.

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given 
sys and the state coordinate transformation T. The model sys must be in 
state-space form and the matrix T must be invertible. ss2ss is applicable to 
both continuous- and discrete-time models.

Example Perform a similarity transform to improve the conditioning of the  matrix.

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See ssbal for a more direct approach.

See Also balreal Grammian-based I/O balancing
canon Canonical state-space realizations
ssbal Balancing of state-space models using diagonal 

similarity transformations

x· Ax Bu+=

y Cx Du+=

x Tx= x

x· TAT 1– x TBu+=

y CT 1– x Du+=

A
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1ssbalPurpose Balance state-space models using a diagonal similarity transformation

Syntax [sysb,T] = ssbal(sys)
[sysb,T] = ssbal(sys,condT)

Description Given a state-space model sys with matrices ,

[sysb,T] = ssbal(sys)

computes a diagonal similarity transformation  and a scalar  such that

has approximately equal row and column norms. ssbal returns the balanced 
model sysb with matrices

and the state transformation  where  is the new state.

[sysb,T] = ssbal(sys,condT) specifies an upper bound condT on the 
condition number of . Since balancing with ill-conditioned  can 
inadvertently magnify rounding errors, condT gives control over the worst-case 
roundoff amplification factor. The default value is condT=Inf.

ssbal returns an error if the state-space model sys has varying state 
dimensions.

Example Consider the continuous-time state-space model with the following data.

a = [1 1e4 1e2;0 1e2 1e5;10 1 0];
b = [1;1;1];
c = [0.1 10 1e2];
sys = ss(a,b,c,0)

A B C D, , ,( )

T α

TAT 1– TB α⁄

αCT 1– 0

TAT 1– TB α⁄ αCT 1– D,, ,( )

x Tx= x

T T

A
1 104 102

0 102 105

10 1 0

 ,= B
1
1
1

 ,= C 0.1 10 100=
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Balance this model with ssbal by typing 

ssbal(sys)

a = 
                        x1           x2           x3
           x1            1         2500      0.39063
           x2            0          100       1562.5
           x3         2560           64            0
 
 
b = 
                        u1
           x1        0.125
           x2          0.5
           x3           32
 
 
c = 
                        x1           x2           x3
           y1          0.8           20        3.125
 
 
d = 
                        u1
           y1            0
 
Continuous-time system.

Direct inspection shows that the range of numerical values has been 
compressed by a factor 100 and that the  and  matrices now have nearly 
equal norms.

Algorithm ssbal uses the MATLAB function balance to compute  and .

See Also balreal Grammian-based I/O balancing
ss2ss State coordinate transformation

B C

T α
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1ssdataPurpose Quick access to state-space model data

Syntax [a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description [a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array) 
data  from the state-space model (LTI array) sys. If sys is a 
transfer function or zero-pole-gain model (LTI array), it is first converted to 
state space. See Table 11-16, “State-Space Model Properties,” on page 11-195 
for more information on the format of state-space model data.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts. 

You can access the remaining LTI properties of sys with get or by direct 
referencing, for example,

sys.statename

 For arrays of state-space models with variable numbers of states, use the 
syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell 
arrays a, b, c, and d.

See Also dssdata Quick access to descriptor state-space data
get Get properties of LTI models
set Set model properties
ss Specify state-space models
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D, , ,( )
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1stabsepPurpose Stable/unstable decomposition of LTI models

Syntax [GS,GNS] = stabsep(G,CONDMAX)
[G1,G2] = STABSEP(G,CONDMAX,MODE,TOL)

Description stapsep decomposes the LTI model into its stable and unstable parts

       G = GS + GNS

where GS contains all stable modes that can be separated from the unstable 
modes in a numerically stable way, and GNS contains the remaining modes. GNS 
is always strictly proper.

Use the optional input CONDMAX to control the condition number of the 
decoupling state transformation. Increasing CONDMAX helps separate close by 
stable and unstable modes at the expense of accuracy (see BDSCHUR for more 
details). By default CONDMAX=1e8.

[G1,G2] = STABSEP(G,CONDMAX,MODE,TOL) performs more general 
stable/unstable decompositions such that G1 includes all separable 
eigenvalues lying in one the following regions: 

The default values are MODE=1 and TOL=0.

See Also modsep Region-based modal decomposition

Table 1-7:  

Mode Continuous Time Discrete Time

1 Re(s)<-TOL*max(1,|Im(s)|)  1 |z| < 1-TOL

2 Re(s)> TOL*max(1,|Im(s)|)  2 |z| > 1+TOL
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1stackPurpose Build an LTI array by stacking LTI models or LTI arrays along array 
dimensions of an LTI array

Syntax sys = stack(arraydim,sys1,sys2,...)

Description sys = stack(arraydim,sys1,sys2,...) produces an array of LTI models sys 
by stacking (concatenating) the LTI models (or LTI arrays) sys1,sys2,... 
along the array dimension arraydim. All models must have the same number 
of inputs and outputs (the same I/O dimensions), but the number of states can 
vary. The I/O dimensions are not counted in the array dimensions. See 
“Dimensions, Size, and Shape of an LTI Array” and “Building LTI Arrays 
Using the stack Function” for more information.

For arrays of state-space models with variable order, you cannot use the dot 
operator (e.g., sys.a) to access arrays. Use the syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell 
arrays a, b, c, and d. 

Example If sys1 and sys2 are two LTI models:

• stack(1,sys1,sys2) produces a 2-by-1 LTI array.

• stack(2,sys1,sys2) produces a 1-by-2 LTI array.

• stack(3,sys1,sys2) produces a 1-by-1-by-2 LTI array.
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1stepPurpose Step response of LTI systems

Syntax step(sys)
step(sys,t)

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)
step(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = step(sys)

Description step calculates the unit step response of a linear system. Zero initial state is 
assumed in the state-space case. When invoked with no output arguments, this 
function plots the step response on the screen.

step(sys) plots the step response of an arbitrary LTI model sys. This model 
can be continuous or discrete, and SISO or MIMO. The step response of 
multi-input systems is the collection of step responses for each input channel. 
The duration of simulation is determined automatically based on the system 
poles and zeros.

step(sys,t) sets the simulation horizon explicitly. You can specify either a 
final time t = Tfinal (in seconds), or a vector of evenly spaced time samples 
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For 
continuous systems, dt becomes the sample time of the discretized simulation 
model (see “Algorithm”), so make sure to choose dt small enough to capture 
transient phenomena.

To plot the step responses of several LTI models sys1,..., sysN on a single 
figure, use

step(sys1,sys2,...,sysN) 
step(sys1,sys2,...,sysN,t) 
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All systems must have the same number of inputs and outputs but may 
otherwise be a mix of continuous- and discrete-time systems. This syntax is 
useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, and/or marker for each 
system. For example,

step(sys1,'y:',sys2,'g--')

plots the step response of sys1 with a dotted yellow line and the step response 
of sys2 with a green dashed line.

When invoked with output arguments, 

[y,t] = step(sys)
[y,t,x] = step(sys) % for state-space models only
y = step(sys,t)

return the output response y, the time vector t used for simulation, and the 
state trajectories x (for state-space models only). No plot is drawn on the 
screen. For single-input systems, y has as many rows as time samples (length 
of t), and as many columns as outputs. In the multi-input case, the step 
responses of each input channel are stacked up along the third dimension of y. 
The dimensions of y are then

and y(:,:,j) gives the response to a unit step command injected in the jth 
input channel. Similarly, the dimensions of x are

Example Plot the step response of the following second-order state-space model.

length of t( ) number of outputs( ) number of inputs( )××

length of t( ) number of states( ) number of inputs( )××

x·1

x·2

0.5572  – 0.7814–

0.7814 0

x1

x2

1   1–

0    2

u1

u2

+=

y 1.9691  6.4493
x1

x2

=
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a = [-0.5572   -0.7814;0.7814  0];
b = [1 -1;0 2];
c = [1.9691  6.4493];
sys = ss(a,b,c,0);
step(sys)

The left plot shows the step response of the first input channel, and the right 
plot shows the step response of the second input channel.

Algorithm Continuous-time models are converted to state space and discretized using 
zero-order hold on the inputs. The sampling period is chosen automatically 
based on the system dynamics, except when a time vector t = 0:dt:Tf is 
supplied (dt is then used as sampling period).

See Also impulse Impulse response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer
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1stepplotPurpose Plot the step response of LTI systems and return the plot handle

Syntax h = stepplot(sys)

h = stepplot(sys,Tfinal)
h = stepplot(sys,t)
h = stepplot(sys1,sys2,...,t)
h = stepplot(AX,...)
h = stepplot(..., plotoptions)

Description h = stepplot(sys) plots the step response of the LTI model sys (created with 
either tf, zpk, or ss). It also returns the plot handle h. You can use this handle 
to customize the plot with the getoptions and setoptions commands. Type

help timeoptions 

for a list of available plot options.

For multiinput models, independent step commands are applied to each input 
channel. The time range and number of points are chosen automatically.

stepplot(sys,Tfinal) simulates the step response from t=0 to the final time 
t=Tfinal. For discrete-time models with unspecified sampling time, Tfinal is 
interpreted as the number of samples.

stepplot(sys,t) uses the user-supplied time vector t for simulation. For 
discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample 
time. For continuous-time models, t should be of the form Ti:dt:Tf, where dt 
becomes the sample time for the discrete approximation to the continuous 
system. The step input is always assumed to start at t=0 (regardless of Ti).

stepplot(sys1,sys2,...,t) plots the step responses of multiple LTI models 
sys1,sys2,... on a single plot. The time vector t is optional. You can also specify 
a color, line style, and marker for each system, as in 

stepplot(sys1,'r',sys2,'y--',sys3,'gx')

stepplot(AX,...) plots into the axes with handle AX. 

stepplot(..., plotoptions) plots the step response with the options 
specified in plotoptions. Type

help timeoptions 
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for more details.

Example Use the plot handle to normalize the responses on a step plot.

sys = rss(3);
h = stepplot(sys,[1,1,1]);
% Normalize responses.
setoptions(h,'Normalize','on');

See Also getoptions Get plot options
setoptions Set plot options
step Plot step responses of LTI systems
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1tfPurpose Specify transfer functions or convert LTI model to transfer function form

Syntax sys = tf(num,den)
sys = tf(num,den,Ts)
sys = tf(M)
sys = tf(num,den,ltisys)

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = tf(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = tf('s')
sys = tf('z')

tfsys = tf(sys)
tfsys = tf(sys,'inv') % for state-space sys only

Description tf is used to create real- or complex-valued transfer function models (TF 
objects) or to convert state-space or zero-pole-gain models to transfer function 
form.

Creation of Transfer Functions

sys = tf(num,den) creates a continuous-time transfer function with 
numerator(s) and denominator(s) specified by num and den. The output sys is a 
TF object storing the transfer function data (see “Transfer Function Models” on 
page 2-8).

In the SISO case, num and den are the real- or complex-valued row vectors of 
numerator and denominator coefficients ordered in descending powers of . 
These two vectors need not have equal length and the transfer function need 
not be proper. For example, h = tf([1 0],1) specifies the pure derivative 

.

To create MIMO transfer functions, specify the numerator and denominator of 
each SISO entry. In this case:

• num and den are cell arrays of row vectors with as many rows as outputs and 
as many columns as inputs.

s

h s( ) s=
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• The row vectors num{i,j} and den{i,j} specify the numerator and 
denominator of the transfer function from input j to output i (with the SISO 
convention).

If all SISO entries of a MIMO transfer function have the same denominator, 
you can set den to the row vector representation of this common denominator. 
See “Examples” for more details.

sys = tf(num,den,Ts) creates a discrete-time transfer function with sample 
time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time 
unspecified. The input arguments num and den are as in the continuous-time 
case and must list the numerator and denominator coefficients in descending 
powers of .

sys = tf(M) creates a static gain M (scalar or matrix).

sys = tf(num,den,ltisys) creates a transfer function with generic LTI 
properties inherited from the LTI model ltisys (including the sample time). 
See “Generic Properties” on page 2-26 for an overview of generic LTI 
properties.

There are several ways to create LTI arrays of transfer functions. To create 
arrays of SISO or MIMO TF models, either specify the numerator and 
denominator of each SISO entry using multidimensional cell arrays, or use a 
for loop to successively assign each TF model in the array. See “Building LTI 
Arrays” on page 4-12 for more information.

Any of the previous syntaxes can be followed by property name/property value 
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the 
input names or the transfer function variable. See set entry and the example 
below for details. Note that

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for

sys = tf(num,den)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

z
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Transfer Functions as Rational Expressions in s or z
You can also use real- or complex-valued rational expressions to create a TF 
model. To do so, first type either:

• s = tf('s') to specify a TF model using a rational function in the Laplace 
variable, s.

• z = tf('z',Ts) to specify a TF model with sample time Ts using a rational 
function in the discrete-time variable, z.

Once you specify either of these variables, you can specify TF models directly 
as rational expressions in the variable s or z by entering your transfer function 
as a rational expression in either s or z.

Conversion to Transfer Function

tfsys = tf(sys) converts an arbitrary SS or ZPK LTI model sys to transfer 
function form. The output tfsys (TF object) is the transfer function of sys. By 
default, tf uses zero to compute the numerators when converting a state-space 
model to transfer function form. Alternatively,

tfsys = tf(sys,'inv')

uses inversion formulas for state-space models to derive the numerators. This 
algorithm is faster but less accurate for high-order models with low gain at 

.

Examples Example 1
Create the two-output/one-input transfer function

with input current and outputs torque and ang velocity. 

To do this, type

num = {[1 1] ; 1}
den = {[1 2 2] ; [1 0]}

s 0=

H p( )

p 1+

p2 2p 2+ +
-----------------------------

1
p
---

=
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H = tf(num,den,'inputn','current',...
'outputn',{'torque' 'ang. velocity'},...

 'variable','p')

Transfer function from input "current" to output...
              p + 1
 torque:  -------------
          p^2 + 2 p + 2
 
                 1
 ang. velocity:  -
                 p

Note how setting the 'variable' property to 'p' causes the result to be 
displayed as a transfer function of the variable .

Example 2
To use a rational expression to create a SISO TF model, type

s = tf('s');
H = s/(s^2 + 2*s +10);

This produces the same transfer function as 

h = tf([1 0],[1 2 10]);

Example 3
Specify the discrete MIMO transfer function

with common denominator  and sample time of 0.2 seconds.

nums = {1 [1 0];[-1 2] 3}
Ts = 0.2
H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)

p

H z( )

1
z 0.3+
-----------------  z

z 0.3+
-----------------

z– 2+
z 0.3+
-----------------  3

z 0.3+
-----------------

=

d z( ) z 0.3+=
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Example 4
Compute the transfer function of the state-space model with the following data.

To do this, type

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 0],[0 1])
tf(sys) 

Transfer function from input 1 to output:
      s
-------------
s^2 + 4 s + 5
 
Transfer function from input 2 to output:
s^2 + 5 s + 8
-------------
s^2 + 4 s + 5

Example 5

You can use a for loop to specify a 10-by-1 array of SISO TF models.

s = tf('s')
H = tf(zeros(1,1,10));                                                   

for k=1:10,                                                              
H(:,:,k) = k/(s^2+s+k);                                               

end                                                                      

The first statement pre-allocates the TF array and fills it with zero transfer 
functions. 

Discrete-Time 
Conventions

The control and digital signal processing (DSP) communities tend to use 
different conventions to specify discrete transfer functions. Most control 
engineers use the  variable and order the numerator and denominator terms 
in descending powers of , for example,

A 2– 1–

1 2–
 ,= B 1 1

2 1–
 ,= C 1 0  ,= D 0 1=

z
z

h z( ) z2

z2 2z 3+ +
----------------------------=
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The polynomials  and  are then specified by the row vectors  
[1 0 0] and [1 2 3], respectively. By contrast, DSP engineers prefer to write 
this transfer function as 

and specify its numerator as 1 (instead of [1 0 0]) and its denominator as  
[1 2 3].

tf switches convention based on your choice of variable (value of the 
'Variable' property).

For example,

g = tf([1 1],[1 2 3],0.1)

specifies the discrete transfer function

because  is the default variable. In contrast,

h = tf([1 1],[1 2 3],0.1,'variable','z^-1')

uses the DSP convention and creates

Variable Convention

'z' (default) Use the row vector [ak ... a1 a0] to specify the 
polynomial  (coefficients ordered in 
descending powers of ).

'z^-1', 'q' Use the row vector [b0 b1 ... bk] to specify the 
polynomial  (coefficients in 
ascending powers of  or ).

z2 z2 2z 3+ +

h z 1–( ) 1

1 2z 1– 3z 2–
+ +

----------------------------------------=

akzk ... a1z a0+ + +
z

b0 b1z 1– ... bkz k–
+ + +

z 1– q

g z( ) z 1+

z2 2z 3+ +
----------------------------=

z

h z 1–( ) 1 z 1–
+

1 2z 1– 3z 2–
+ +

---------------------------------------- zg z( )= =
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See also filt for direct specification of discrete transfer functions using the 
DSP convention.

Note that tf stores data so that the numerator and denominator lengths are 
made equal. Specifically, tf stores the values

num = [0 1 1]; den = [1 2 3]

for g (the numerator is padded with zeros on the left) and the values

num = [1 1 0]; den = [1 2 3]

for h (the numerator is padded with zeros on the right).

Algorithm tf uses the MATLAB function poly to convert zero-pole-gain models, and the 
functions zero and pole to convert state-space models.

See Also filt Specify discrete transfer functions in DSP format
frd Specify a frequency response data model
get Get properties of LTI models
set Set properties of LTI models
ss Specify state-space models or convert to state space
tfdata Retrieve transfer function data
zpk Specify zero-pole-gain models or convert to ZPK
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1tfdataPurpose Quick access to transfer function data

Syntax [num,den] = tfdata(sys)
[num,den] = tfdata(sys,'v')
[num,den,Ts] = tfdata(sys)

Description [num,den] = tfdata(sys) returns the numerator(s) and denominator(s) of 
the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or 
ZPK models) sys. For single LTI models, the outputs num and den of tfdata are 
cell arrays with the following characteristics:

• num and den have as many rows as outputs and as many columns as inputs.

• The (i,j) entries num{i,j} and den{i,j} are row vectors specifying the 
numerator and denominator coefficients of the transfer function from input 
j to output i. These coefficients are ordered in descending powers of  or .

For arrays sys of LTI models, num and den are multidimensional cell arrays 
with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer 
function form using tf. See Table 11-15, “LTI Properties,” on page 11-194 for 
more information on the format of transfer function model data.

For SISO transfer functions, the syntax

[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row vectors 
rather than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts. 

You can access the remaining LTI properties of sys with get or by direct 
referencing, for example,

sys.Ts
sys.variable

Example Given the SISO transfer function

h = tf([1 1],[1 2 5])

s z
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you can extract the numerator and denominator coefficients by typing

[num,den] = tfdata(h,'v')

num =
     0     1     1
 
den =
     1     2     5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing

H = [h ; tf(1,[1 1])]

the command

[num,den] = tfdata(H)

now returns two cell arrays with the numerator/denominator data for each 
SISO entry. Use celldisp to visualize this data. Type

celldisp(num)

and MATLAB returns the numerator vectors of the entries of H.

num{1} =
     0     1     1
 
num{2} =
     0     1

Similarly, for the denominators, type

celldisp(den)

den{1} =
     1     2     5
 
den{2} =
     1     1

See Also get Get properties of LTI models
ssdata Quick access to state-space data
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tf Specify transfer functions
zpkdata Quick access to zero-pole-gain data
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1totaldelayPurpose Return the total combined I/O delays for an LTI model

Syntax td = totaldelay(sys)

Description td = totaldelay(sys) returns the total combined I/O delays for an LTI model 
sys. The matrix td combines contributions from the InputDelay, OutputDelay, 
and ioDelay properties, (see set on page 11-192 or type ltiprops for details on 
these properties).

Delays are expressed in seconds for continuous-time models, and as integer 
multiples of the sample period for discrete-time models. To obtain the delay 
times in seconds, multiply td by the sample time sys.Ts.

Example sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2;          % 2 sec input delay
sys.outputd = 1.5;          % 1.5 sec output delay
td = totaldelay(sys)

td =
    3.5000

The resulting I/O map is

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model 
sys.

See Also delay2z Change transfer functions of discrete-time LTI models 
with delays to rational functions or absorbs FRD delays 
into the frequency response phase information

hasdelay True for LTI models with delays

e 2s– 1
s
---e 1.5s–× e 3.5s– 1

s
---=
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1zeroPurpose Transmission zeros of LTI models

Syntax z = zero(sys)
[z,gain] = zero(sys)

Description zero computes the zeros of SISO systems and the transmission zeros of MIMO 
systems. For a MIMO system with matrices , the transmission 
zeros are the complex values  for which the normal rank of

drops.

z = zero(sys) returns the (transmission) zeros of the LTI model sys as a 
column vector.

[z,gain] = zero(sys) also returns the gain (in the zero-pole-gain sense) if 
sys is a SISO system.

Algorithm zero is based on SLICOT routine AB08NX. Also use LAPACK routines DGEEV 
and DGEGV (and their complex counterparts) for eigenvalue computation. 

The transmission zeros are computed using the algorithm in [1].

References [1] Emami-Naeini, A. and P. Van Dooren, “Computation of Zeros of Linear 
Multivariable Systems,” Automatica, 18 (1982), pp. 415–430.

See Also pole Compute the poles of an LTI model
pzmap Compute the pole-zero map

A B C D, , ,( )
λ

A λI– B
C D
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1zgridPurpose Generate a z-plane grid of constant damping factors and natural frequencies

Syntax zgrid
zgrid(z,wn)

Description zgrid generates, for root locus and pole-zero maps, a grid of constant damping 
factors from zero to one in steps of 0.1 and natural frequencies from zero to  
in steps of , and plots the grid over the current axis. If the current axis 
contains a discrete z-plane root locus diagram or pole-zero map, zgrid draws 
the grid over the plot without altering the current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural frequency 
lines for the damping factors and normalized natural frequencies in the vectors 
z and wn, respectively. If the current axis contains a discrete z-plane root locus 
diagram or pole-zero map, zgrid(z,wn) draws the grid over the plot. The 
frequency lines for unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([],[]) draws the unit circle.

Alternatively, you can select Grid from the right-click menu to generate the 
same z-plane grid.

Example Plot z-plane grid lines on the root locus for the system

by typing

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

Transfer function:
2 z^2 - 3.4 z + 1.5
-------------------
 z^2 - 1.6 z + 0.8

Sampling time: unspecified

π
π 10⁄

H z( ) 2z2 3.4z– 1.5+

z2 1.6z– 0.8+
-----------------------------------------=
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To see the z-plane grid on the root locus plot, type

rlocus(H)
zgrid
axis('square')

See Also pzmap Plot pole-zero map of LTI systems
rlocus Plot root locus
sgrid Generate s-plane grid lines
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1zpkPurpose Specify zero-pole-gain models or convert LTI model to zero-pole-gain form

Syntax sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)
sys = zpk(M)
sys = zpk(z,p,k,ltisys)

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)
sys = zpk(z,p,k,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = zpk('s')
sys = zpk('z')

zsys = zpk(sys)
zsys = zpk(sys,'inv') % for state-space sys only

Description zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS 
models to zero-pole-gain form.

Creation of Zero-Pole-Gain Models

sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros 
z, poles p, and gain(s) k. The output sys is a ZPK object storing the model data 
(see “LTI Objects” on page 2-3).

In the SISO case, z and p are the vectors of real- or complex-valued zeros and 
poles, and k is the real- or complex-valued scalar gain.

Set z or p to [] for systems without zeros or poles. These two vectors need not 
have equal length and the model need not be proper (that is, have an excess of 
poles).

You can also use rational expressions to create a ZPK model. To do so, use 
either:

• s = zpk('s') to specify a ZPK model from a rational transfer function of the 
Laplace variable, s.

h s( ) k s z 1( )–( ) s z 2( )–( )... s z m( )–( )
s p 1( )–( ) s p 2( )–( )... s p n( )–( )

----------------------------------------------------------------------------------=
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• z = zpk('z',Ts) to specify a ZPK model with sample time Ts from a rational 
transfer function of the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly 
as real- or complex-valued rational expressions in the variable s or z.

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of 
each SISO entry of this model. In this case:

• z and p are cell arrays of vectors with as many rows as outputs and as many 
columns as inputs, and k is a matrix with as many rows as outputs and as 
many columns as inputs.

• The vectors z{i,j} and p{i,j} specify the zeros and poles of the transfer 
function from input j to output i.

• k(i,j) specifies the (scalar) gain of the transfer function from input j to 
output i.

See below for a MIMO example.

sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with 
sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time 
unspecified. The input arguments z, p, k are as in the continuous-time case.

sys = zpk(M) specifies a static gain M.

sys = zpk(z,p,k,ltisys) creates a zero-pole-gain model with generic LTI 
properties inherited from the LTI model ltisys (including the sample time). 
See “Generic Properties” on page 2-26 for an overview of generic LTI 
properties.

To create an array of ZPK models, use a for loop, or use multidimensional cell 
arrays for z and p, and a multidimensional array for k. 

Any of the previous syntaxes can be followed by property name/property value 
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the 
input names or the input delay time. See set entry and the example below for 
details. Note that
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sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for the following sequence of commands.

sys = zpk(z,p,k)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Zero-Pole-Gain Models as Rational Expressions in s or z
You can also use rational expressions to create a ZPK model. To do so, first type 
either:

• s = zpk('s') to specify a ZPK model using a rational function in the Laplace 
variable, s.

• z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a 
rational function in the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly 
as rational expressions in the variable s or z by entering your transfer function 
as a rational expression in either s or z.

Conversion to Zero-Pole-Gain Form

zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form. 
The output zsys is a ZPK object. By default, zpk uses zero to compute the zeros 
when converting from state-space to zero-pole-gain. Alternatively,

zsys = zpk(sys,'inv')

uses inversion formulas for state-space models to compute the zeros. This 
algorithm is faster but less accurate for high-order models with low gain at 

.

Variable 
Selection

As for transfer functions, you can specify which variable to use in the display 
of zero-pole-gain models. Available choices include  (default) and  for 
continuous-time models, and  (default), , or  for discrete-time 
models. Reassign the 'Variable' property to override the defaults. Changing 
the variable affects only the display of zero-pole-gain models.

Example Example 1
Specify the following zero-pole-gain model.

s 0=

s p
z z 1– q z 1–

=
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To do this, type

z = {[] ; -0.5}
p = {0.3 ; [0.1+i 0.1-i]}
k = [1 ; 2]
H = zpk(z,p,k,-1) % unspecified sample time

Example 2
Convert the transfer function

h = tf([-10 20 0],[1 7 20 28 19 5])

Transfer function:
             -10 s^2 + 20 s
----------------------------------------
s^5 + 7 s^4 + 20 s^3 + 28 s^2 + 19 s + 5

to zero-pole-gain form by typing

zpk(h)

Zero/pole/gain:
     -10 s (s-2)
----------------------
(s+1)^3 (s^2 + 4s + 5)

Example 3
Create a discrete-time ZPK model from a rational expression in the variable z, 
by typing

z = zpk('z',0.1); 
H = (z+.1)*(z+.2)/(z^2+.6*z+.09)

Zero/pole/gain:
(z+0.1) (z+0.2)
---------------

H z( )

1
z 0.3–
-----------------

2 z 0.5+( )
z 0.1– j+( ) z 0.1– j–( )

------------------------------------------------------------
=
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   (z+0.3)^2
 
Sampling time: 0.1

Algorithm zpk uses the MATLAB function roots to convert transfer functions and the 
functions zero and pole to convert state-space models.

See Also frd Convert to frequency response data models
get Get properties of LTI models
set Set properties of LTI models
ss Convert to state-space models
tf Convert to TF transfer function models
zpkdata Retrieve zero-pole-gain data
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1zpkdata Purpose Quick access to zero-pole-gain data

Syntax [z,p,k] = zpkdata(sys)
[z,p,k] = zpkdata(sys,'v')
[z,p,k,Ts,Td] = zpkdata(sys)

Description [z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero- 
pole-gain model sys. The outputs z and p are cell arrays with the following 
characteristics:

• z and p have as many rows as outputs and as many columns as inputs.

• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of zeros and 
poles of the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns 
as inputs such that k(i,j) is the gain of the transfer function from input j to 
output i. If sys is a transfer function or state-space model, it is first converted 
to zero-pole-gain form using zpk. See Table 11-15, “LTI Properties,” on page 
11-194 for more information on the format of state-space model data.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather 
than as cell arrays (see example below).

[z,p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts and the 
input delay data Td. For continuous-time models, Td is a row vector with one 
entry per input channel (Td(j) indicates by how many seconds the jth input is 
delayed). For discrete-time models, Td is the empty matrix [] (see d2d for 
delays in discrete systems).

You can access the remaining LTI properties of sys with get or by direct 
referencing, for example,

sys.Ts
sys.inputname

Example Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
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Zero/pole/gain from input to output...
         1
 #1:  -------
      (z-0.3)
 
           2 (z+0.5)
 #2:  -------------------
      (z^2 - 0.2z + 1.01)
 
Sampling time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)

z = 
    [      0]
    [-0.5000]
p = 
    [    0.3000]
    [2x1 double]
k =
     1
     2

To access the zeros and poles of the second output channel of H, get the content 
of the second cell in z and p by typing

z{2,1}

ans =
   -0.5000

p{2,1}

ans =
   0.1000+ 1.0000i
   0.1000- 1.0000i

See Also get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
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zpk Specify zero-pole-gain models
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Introduction
The Control System Toolbox provides the LTI System block for use with 
Simulink. Its reference page contains the following information:

• The block name and icon

• The purpose of the block

• A description of the block

• The block parameters and dialog box including a brief description of each 
parameter
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2LTI SystemPurpose Import LTI System

Description The LTI System block imports linear, time-invariant (LTI) systems into 
Simulink.

Dialog Box

LTI system variable
Enter your LTI model.  This block supports state-space, zero/pole/gain, and 
transfer function formats.  Your model can be discrete- or continuous-time.

Initial states (state-space only)
If your model is in state-space format, you can specify the initial states in 
vector format.  The default is zero for all states.
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Index

A
acker 1-13
algebraic loop 1-86
append 1-15
augstate 1-18

B
balancing realizations 1-19
balreal 1-19
block diagram

See model building
bode (Bode plots) 1-27
bodemag (Bode magnitude plots) 1-32

C
c2d 1-35
cancellation 1-171
canon 1-38
canonical realizations 1-38
care 1-40
cell array 1-102
chgunits 1-44
companion realizations 1-38
comparing models 1-27
concatenation, model

LTI arrays 1-265
connect 1-44, 1-46
connection

feedback 1-83
parallel 1-207
series 1-227

continuous-time 1-132
conversion to

See conversion, model
random model 1-225

controllability
matrix (ctrb) 1-54
staircase form 1-56

conversion, model
between model types 1-256
continuous to discrete (c2d) 1-35
discrete to continuous (d2c) 1-58

with negative real poles 1-59
resampling

discrete models 1-61
state-space, to 1-256

covar 1-51
covariance

output 1-51
state 1-51

crossover frequencies
allmargin 1-14
margin 1-168

ctrb 1-54
ctrbf 1-56

D
d2c 1-58
d2d 1-61
damp 1-62
damping 1-62
dare 1-64
dcgain 1-66
delay2z 1-67
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delays
combining 1-281
conversion 1-67
delay2z 1-67
existence of, test for 1-106
hasdelay 1-106
I/O 1-231
input 1-231
output 1-232
Padé approximation 1-204
time 1-231

denominator
common denominator 1-272
property 1-233
specification 1-87

design
Kalman estimator 1-136
LQG 1-68
pole placement 1-209
state estimator 1-136

diagonal realizations 1-38
digital filter

specification 1-87
Dirac impulse 1-114
discrete-time models 1-132

equivalent continuous poles 1-62
frequency 1-30
Kalman estimator 1-136
random 1-72

discrete-time random models 1-72
discretization 1-35

available methods 1-35
dlqr 1-68
dlyap 1-70
drmodel 1-72

drss 1-72
dsort 1-74
DSP convention 1-87
dss 1-75
dssdata 1-77

E
esort 1-78
estim 1-80
estimator 1-136

current 1-138
discrete 1-136
discrete for continuous plant 1-140

evalfr 1-82

F
feedback 1-83
feedback 1-83

algebraic loop 1-86
negative 1-83
positive 1-83

filt 1-87
first-order hold (FOH) 1-35
frd 1-89
FRD (frequency response data) objects 1-89

data 1-92
frdata 1-92
frequencies

units, conversion 1-44
singular value plots 1-241

frdata 1-92
freqresp 1-94
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frequency
crossover 1-168
for discrete systems 1-30
logarithmically spaced frequencies 1-27
natural 1-62
Nyquist 1-31

frequency response
at single frequency (evalfr) 1-82
Bode plot 1-27, 1-33
discrete-time frequency 1-30
freqresp 1-94
magnitude 1-27
MIMO 1-27
Nichols chart (ngrid) 1-180
Nichols plot 1-182
Nyquist plot 1-191
phase 1-27
plotting 1-27
singular value plot 1-241
viewing the gain and phase margins 1-168

G
gain

low frequency (DC) 1-66
state-feedback gain 1-68

gain margins 1-27
gensig 1-99
get 1-101
gram 1-104
gramian (gram) 1-20

H
Hamiltonian matrix and pencil 1-40
hasdelay 1-106

I
I/O

delays 1-231
dimensions 1-251

impulse 1-114
impulse response 1-114
inheritance 1-75
initial 1-120
initial condition 1-120
innovation 1-138
input

delays 1-231
Dirac impulse 1-114
names 1-232

See also InputName
number of inputs 1-251
pulse 1-99
sine wave 1-99
square wave 1-99

interconnection
See model building

inv 1-126
inversion 1-126

limitations 1-127
isct 1-132
isdt 1-132
isempty 1-133
isproper 1-134
issiso 1-135



Index

Index-4

K
kalman 1-136
Kalman estimator

current 1-138
discrete 1-136
innovation 1-138
steady-state 1-136

kalmd 1-140

L
LFT (linear-fractional transformation) 1-142
LQG (linear quadratic-gaussian) method

continuous LQ regulator 1-148
cost function 1-68
current regulator 1-145
discrete LQ regulator 1-68
Kalman state estimator 1-136
LQ-optimal gain 1-148
optimal state-feedback gain 1-148

lqr 1-148
lqrd 1-150
lqry 1-152
lsim 1-153
LTI arrays

building 1-265
concatenation 1-265
shape, changing 1-219
stack 1-265

LTI models
comparing multiple models 1-27
dimensions 1-179
discrete 1-132
discrete random 1-72
empty 1-133
frd 1-89

model order reduction 1-173
model order reduction (balanced realization) 

1-20
ndims 1-179
norms 1-187
proper transfer function 1-134
random 1-225
second-order 1-202
SISO 1-135
ss 1-255
zpk 1-285

LTI properties
accessing property values (get) 1-101
admissible values 1-230
displaying properties 1-101
getting property names 1-101
getting property values 1-101
inheritance 1-75
property values

setting 1-229
setting property names 1-229

LTI System block 2-3
LTI Viewer 1-162
ltiview 1-162
lyap 1-165
Lyapunov equation 1-52, 1-105

continuous 1-165
discrete 1-70

M
margin 1-168
margins

gain and phase 1-27
matched pole-zero 1-35
MIMO 1-114
minreal 1-171



Index

Index-5

model building
appending LTI models 1-15
feedback connection 1-83
modeling block diagrams (connect) 1-46
parallel connection 1-207
series connection 1-227

model order reduction 1-173
balanced realization 1-20

modred 1-173

N
natural frequency 1-62
ndims 1-179
ngrid 1-180
Nichols

chart 1-180
plot (nichols) 1-182

nichols 1-182
noise

measurement 1-80
process 1-80
white 1-51

norm 1-187
norms of LTI systems (norm) 1-187
numerator

property 1-233
specification 1-87
value 1-102

Nyquist
frequency 1-31
plot (nyquist) 1-191

nyquist 1-191

O
observability

matrix (ctrb) 1-198
staircase form 1-200

obsv 1-198
obsvf 1-200
operations on LTI models

append 1-15
augmenting state with outputs 1-18
diagonal building 1-15
inversion 1-126
sorting the poles 1-74

ord2 1-202
output

covariance 1-51
delays 1-232
names 1-232

 See also OutputName
number of outputs 1-251

P
pade 1-204
Padé approximation (pade) 1-204
parallel 1-207
parallel connection 1-207
phase margins 1-27
place 1-209
plotting

multiple systems 1-27
Nichols chart (ngrid) 1-180
s-plane grid (sgrid) 1-239
z-plane grid (zgrid) 1-283



Index

Index-6

pole 1-211
pole placement 1-209
poles

computing 1-211
damping 1-62
equivalent continuous poles 1-62
multiple 1-211
natural frequency 1-62
pole-zero map 1-212
sorting by magnitude (dsort) 1-74
s-plane grid (sgrid) 1-239
z-plane grid (zgrid) 1-283

pole-zero
cancellation 1-171
map (pzmap) 1-212

proper transfer function 1-134
pulse 1-99
pzmap 1-212

R
random models 1-225
realizations 1-256

balanced 1-19
canonical 1-38
companion form 1-38
minimal 1-171
modal form 1-38
state coordinate transformation 1-260
state coordinate transformation (canonical) 

1-39
reduced-order models 1-173

balanced realization 1-20
resampling (d2d) 1-61
reshape 1-219

Riccati equation
continuous (care) 1-40
discrete (dare) 1-64
for LQG design 1-138
Η∞-like 1-42

rlocus 1-220
rmodel 1-225
root locus

plot (rlocus) 1-220
rss 1-225

S
sample time

resampling 1-61
setting 1-231
unspecified 1-31

second-order model 1-202
series 1-227
series connection 1-227
set 1-229
simulation of linear systems. See time response
sine wave 1-99
singular value plot (bode) 1-241
SISO 1-135
SISO Design Tool 1-247
square wave 1-99
ss 1-255
stability margins

margin 1-168
pole 1-211
pzmap 1-212

stabilizable 1-42
stack 1-265



Index

Index-7

state
augmenting with outputs 1-18
covariance 1-51
discrete estimator 1-140
estimator 1-136
feedback 1-68
names 1-233
number of states 1-251
transformation 1-260
transformation (canonical) 1-39
uncontrollable 1-171
unobservable 1-171

state-space models
balancing 1-19
descriptor 1-75, 1-77
discrete random

discrete-time models 1-72
dss 1-75
initial condition response 1-120
quick data retrieval (dssdata) 1-77
random

continuous-time 1-225
realizations 1-256
specification 1-255
ss 1-255

step response 1-266
Sylvester equation 1-165
symplectic pencil 1-65

T
tf 1-271
time response

final time 1-114
impulse response (impulse) 1-114
initial condition response (initial) 1-120
MIMO 1-114
response to arbitrary inputs (lsim) 1-153
step response (step) 1-266
to white noise 1-51

transfer functions
common denominator 1-272
discrete-time 1-87
discrete-time random 1-72
DSP convention 1-87
filt 1-87
MIMO 1-271
quick data retrieval (tfdata) 1-278
random 1-225
specification 1-271
static gain 1-272
tf 1-271

transmission zeros
See zeros

triangle approximation 1-35
Tustin approximation 1-35

with frequency prewarping 1-35
tzero. See zero



Index

Index-8

Z
zero 1-282
zero-order hold (ZOH) 1-35
zero-pole-gain (ZPK) models

MIMO 1-286
quick data retrieval (zpkdata) 1-290
specification 1-285
static gain 1-286
zpk 1-285

zeros
computing 1-282
pole-zero map 1-212
transmission 1-282

zpk 1-285


	Function Reference
	Functions — Categorical List
	General
	Creating Linear Models
	Data Extraction
	Conversions
	System Interconnections
	System Gain and Dynamics
	Time Domain Analysis
	Frequency Domain Analysis
	Classical Design
	Pole Placement
	LQR/LQG Design
	State-Space Models
	Time Delays
	Model Dimensions and Characteristics
	Overloaded and Arithmetic Operators
	Matrix Equation Solvers
	Command-Line Plot Customization

	Functions — Alphabetical List

	Block Reference
	Introduction

	Index

