
For Use with MATLAB®

Reference
Version 6

Control System
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Control System Toolbox Reference
© COPYRIGHT 2001 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History: June 2001 Online only New for Version 5.1 (Release 12.1)
July 2002 Online only Version 5.2 (Release 13)
June 2004 Online only Version 6.0 (Release 14)
March 2005 Online only Version 6.2 (Release 14SP2)

i

Contents

1
Function Reference

Functions — Categorical List . 1-2
General . 1-2
Creating Linear Models . 1-2
Data Extraction . 1-2
Conversions . 1-3
System Interconnections . 1-3
System Gain and Dynamics . 1-3
Time Domain Analysis . 1-4
Frequency Domain Analysis . 1-4
Classical Design . 1-5
Pole Placement . 1-5
LQR/LQG Design . 1-5
State-Space Models . 1-6
Time Delays . 1-6
Model Dimensions and Characteristics 1-6
Overloaded and Arithmetic Operators . 1-7
Matrix Equation Solvers . 1-7
Command-Line Plot Customization . 1-8

Functions — Alphabetical List . 1-9

2
Block Reference

Introduction . 2-2

Index

ii Contents

1

Function Reference

Functions — Categorical List (p. 1-2) Lists the Control System Toolbox functions according to
their purpose.

Functions — Alphabetical List (p. 1-9) Lists the Control System Toolbox functions
alphabetically.

1 Function Reference

1-2

Functions — Categorical List 1

General

Creating Linear Models

Data Extraction

Conversions

ctrlpref Set Control System Toolbox preferences

ltimodels Detailed help on the various types of LTI
models

ltiprops Detailed help on available LTI model properties

filt Specify a digital filter

frd Create a frequency-response data models

lti/set Set/modify properties of LTI models

ss, dss Create state-space models (continuous/discrete)

tf Create transfer function models

zpk Create zero/pole/gain models

dssdata Descriptor version of ssdata

frdata Extract frequency-response data

lti/get Access values of LTI model properties

ssdata Extract state-space matrices

tfdata Extract numerators and denominators

zpkdata Extract zero/pole/gain data

c2d Convert from continuous- to discrete-time models

chunits Convert the units property for FRD models

Functions — Categorical List

1-3

System Interconnections

System Gain and Dynamics

d2c Convert from discrete- to continuous-time models

d2d Test true for continuous-time models

frd Convert to a frequency-response data model

ss Convert to a state-space model

tf Convert to a transfer function model

zpk Convert to a zero/pole/gain model

append Group LTI systems by appending inputs and outputs

connect Derive state-space models from block diagram
descriptions

feedback Feedback connections of two systems

lft Generalized feedback interconnection (Redheffer star
product)

parallel Generalized parallel connection (see also overloaded
+)

series Generalized series connection (see also overloaded *)

bandwidth System bandwidth

dcgain D.C. (low-frequency) gain

bandwidth System bandwidth

damp Natural frequency and damping of system poles

dsort Norms of LTI systems

esort Sort continuous poles by real part

iopzmap Input/output pole/zero map

lti/norm Norms of LTI systems

1 Function Reference

1-4

Time Domain Analysis

Frequency Domain Analysis

modsep Region-based modal decomposition

pole, eig System poles

pzmap Pole/zero map

stabsep Stable/unstable decomposition

covar Covariance of response to white noise

gensig Generate input signal for lsim

impulse Impulse response

initial Response of state-space system with given initial
state

lsim Response to arbitrary inputs

ltiview Response analysis GUI (LTI Viewer)

step Step response

allmargin All crossover frequencies and related gain/phase
margins

bode Bode diagrams of the frequency response

bodemag Bode magnitude diagram only

evalfr Evaluate frequency response at given frequency

freqresp Frequency response over a frequency grid

frd/interp Interpolate frequency-esponse data

ltiview Response analysis GUI (LTI Viewer)

margin Gain and phase margins

nichols Nichols plot

Functions — Categorical List

1-5

Classical Design

Pole Placement

LQR/LQG Design

nyquist Nyquist plot

sigma Plot the pole/zero map of an LTI model

rlocus Evans root locus

sisotool SISO design GUI (root locus and loop-shaping
techniques)

acker SISO pole placement

estim Form estimator given estimator gain

place MIMO pole placement

reg Form regulator given state-feedback and estimator
gain

augstate Augment output by appending states

lqg Single-step LQG design

lgr, dlqr Linear-quadratic (LQ) state-feedback regulator

lqrd Discrete LQ regulator for continuous plants

lqrreg Form LQG regulator given LQ gain and Kalman
estimator

lqgy LQ regulator with output weighting

kalman Kalman estimator

kalmand Discrete Kalman estimator for continuous plants

1 Function Reference

1-6

State-Space Models

Time Delays

Model Dimensions and Characteristics

balreal Grammian-based input/output balancing

canon State-space canonical forms

ctrb Controllability matrix

gram Controllability and observability grammians

minreal Minimal realization and pole/zero cancellation

modred Model state reduction

margin Calculate gain and phase margins

ngrid Superimpose grid lines on a Nichols plot

nichols Calculate Nichols plot

nyquist Calculate Nyquist plot

obsv Observability matrix

sminreal Structurally minimal realization

ss2ss State coordinate transformation

ssbal Diagonal balancing of state-space realizations

delay2z Replace delays by poles at z=0 or FRD phase shift

hasdelay True for models with time delays

pade Pade approximation of time delays

totaldelay Total delay between each input/output pair

class Model type ('tf', 'zpk', 'ss', or 'frd')

isct True for continuous-time models

isdt True for discrete-time models

Functions — Categorical List

1-7

Overloaded and Arithmetic Operators

Matrix Equation Solvers

isproper True for proper models

issiso True for single-input/single-output models

lti/ndims Number of dimensions

lti/isempty True for empty LTI models

reshape Reshape array of linear models

size Model sizes and order

+ and - Add and subtract systems (parallel connection)

* Multiply systems (series connection)

\ Left divide — sys1\sys2 means inv(sys1)*sys2

/ Right divide — sys1/sys2 means sys1*inv(sys2)

^ Powers of a given system

' Pertransposition

.' Transposition of input/output map

[..] Concatenate models along inputs or outputs

stack Stack models/arrays along some array dimension

lti/inv Inverse of an LTI system

conj Complex conjugation of model coefficients

bdschur Block diagonalization of a square matrix

care, dare Solve algebraic Riccati equations

gcare, gdare Solve generalized algebraic Riccati equations

lyap, dlyap Solve Lyapunov equations

lyapchol,
dlyapschol

Square-root Lyapunov equations

1 Function Reference

1-8

Command-Line Plot Customization
bodeplot Bode magnitude and phase plus plot handle

getoptions Get the plot options handle

hsvplot Hankel singular value plus plot handle

impulseplot Impulse response plus plot handle

initialplot Initial condition plus plot handle

iopzplot Pole/zero maps for input/output pairs plus plot
handle

lsimplot Time response to arbitrary inputs plus plot
handle

nicholsplot Nichols plot plus plot handle

nyquistplot Nyquist plus plot handle

pzplot Pole/zero plus plot handle

rlocusplot Root locus plus plot handle

setoptions Set plot options

sigmaplot Singular values of the frequency response plus
plot handle

stepplot Step response plus plot handle

Functions — Alphabetical List

1-9

Functions — Alphabetical List 1

acker . 1-13
allmargin . 1-14
append . 1-15
augstate . 1-18
balreal . 1-19
balred . 1-24
bandwidth . 1-26
bode . 1-27
bodemag . 1-32
bodeplot . 1-33
c2d . 1-35
canon . 1-38
care . 1-40
chgunits . 1-44
conj . 1-45
connect . 1-46
covar . 1-51
ctrb . 1-54
ctrbf . 1-56
d2c . 1-58
d2d . 1-61
damp . 1-62
dare . 1-64
dcgain . 1-66
delay2z . 1-67
dlqr . 1-68
dlyap . 1-70
dlyapchol . 1-71
drss . 1-72
dsort . 1-74
dss . 1-75
dssdata . 1-77
esort . 1-78
estim . 1-80
evalfr . 1-82

1

1-10

feedback . 1-83
filt . 1-87
frd . 1-89
frdata . 1-92
freqresp . 1-94
gcare . 1-97
gdare . 1-98
gensig . 1-99
get . 1-101
getoptions . 1-103
gram . 1-104
hasdelay . 1-106
hsvd . 1-107
hsvplot . 1-113
impulse . 1-114
impulseplot . 1-118
initial . 1-120
initialplot . 1-123
interp . 1-125
inv . 1-126
iopzmap . 1-128
iopzplot . 1-130
isct, isdt . 1-132
isempty . 1-133
isproper . 1-134
issiso . 1-135
kalman . 1-136
kalmd . 1-140
lft . 1-142
lqgreg . 1-144
lqr . 1-148
lqrd . 1-150
lqry . 1-152
lsim . 1-153
lsimplot . 1-158
ltimodels . 1-160
ltiprops . 1-161

Functions — Alphabetical List

1-11

ltiview . 1-162
lyap . 1-165
lyapchol . 1-167
margin . 1-168
minreal . 1-171
modred . 1-173
modsep . 1-178
ndims . 1-179
ngrid . 1-180
nichols . 1-182
nicholsplot . 1-185
norm . 1-187
nyquist . 1-191
nyquistplot . 1-196
obsv . 1-198
obsvf . 1-200
ord2 . 1-202
lti/order . 1-203
pade . 1-204
parallel . 1-207
place . 1-209
pole . 1-211
pzmap . 1-212
pzplot . 1-214
reg . 1-216
reshape . 1-219
rlocus . 1-220
rlocusplot . 1-223
rss . 1-225
series . 1-227
set . 1-229
setoptions . 1-236
sgrid . 1-239
sigma . 1-241
sigmaplot . 1-245
sisotool . 1-247
size . 1-251

1

1-12

sminreal . 1-253
ss . 1-255
ss2ss . 1-260
ssbal . 1-261
ssdata . 1-263
stabsep . 1-264
stack . 1-265
step . 1-266
stepplot . 1-269
tf . 1-271
tfdata . 1-278
totaldelay . 1-281
zero . 1-282
zgrid . 1-283
zpk . 1-285
zpkdata . 1-290
LTI System . 2-3

acker

1-13

1ackerPurpose Pole placement design for single-input systems

Syntax k = acker(A,b,p)

Description Given the single-input system

and a vector p of desired closed-loop pole locations, acker (A,b,p)uses
Ackermann’s formula [1] to calculate a gain vector k such that the state
feedback places the closed-loop poles at the locations p. In other
words, the eigenvalues of match the entries of p (up to ordering). Here
A is the state transmitter matrix and b is the input to state transmission vector.

You can also use acker for estimator gain selection by transposing the matrix
A and substituting c' for b when y = cx is a single output.

l = acker(a',c',p).'

Limitations acker is limited to single-input systems and the pair must be
controllable.

Note that this method is not numerically reliable and starts to break down
rapidly for problems of order greater than 5 or for weakly controllable systems.
See place for a more general and reliable alternative.

References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.

See Also lqr Optimal LQ regulator
place Pole placement design
rlocus Root locus design

x· Ax bu+=

u kx–=
A bk–

A b,()

allmargin

1-14

1allmarginPurpose Compute all crossover frequencies and corresponding stability margins

Syntax S = allmargin(sys)

Description allmargin computes the gain, phase, and delay margins and the corresponding
crossover frequencies of the SISO open-loop model sys. allmargin is applicable
to any SISO model, including models with delays.

The output S is a structure with the following fields:

• GMFrequency — All -180 degree crossover frequencies (in rad/sec)

• GainMargin — Corresponding gain margins, defined as 1/G where G is the
gain at crossover

• PMFrequency — All 0 dB crossover frequencies in rad/sec

• PhaseMargin — Corresponding phase margins in degrees

• DMFrequency and DelayMargin — Critical frequencies and the
corresponding delay margins. Delay margins are given in seconds for
continuous-time systems and multiples of the sample time for discrete-time
systems.

• Stable — 1 if the nominal closed-loop system is stable, 0 otherwise.

In general, stability cannot be assessed for FRD system. In any case when
stability cannot be assessed, S is set to NaN.

See Also ltimodels Help on LTI models
ltiview LTI system viewer
margin Gain and phase margins for SISO open-loop systems

append

1-15

1appendPurpose Group LTI models by appending their inputs and outputs

Syntax sys = append(sys1,sys2,...,sysN)

Description append appends the inputs and outputs of the LTI models sys1,...,sysN to form
the augmented model sys depicted below.

For systems with transfer functions ,..., , the resulting system sys
has the block-diagonal transfer function

For state-space models sys1 and sys2 with data
and , append(sys1,sys2) produces the following state-space
model.

:
:

sys1

sys2

sysN

u1

u2

uN

y1

y2

yN

sys

H1 s() HN s()

H1 s() 0 .. 0

0 H2 s() . :

: . . 0
0 .. 0 HN s()

A1 B1 C1 D1, , ,()
A2 B2 C2 D2, , ,()

append

1-16

Arguments The input arguments sys1,..., sysN can be LTI models of any type. Regular
matrices are also accepted as a representation of static gains, but there should
be at least one LTI object in the input list. The LTI models should be either all
continuous, or all discrete with the same sample time. When appending models
of different types, the resulting type is determined by the precedence rules (see
Precedence Rules for details).

There is no limitation on the number of inputs.

Example The commands

sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)

produce the state-space model

sys

a =
 x1 x2
 x1 0 0
 x2 0 1.00000

b =
 u1 u2 u3
 x1 1.00000 0 0
 x2 0 0 2.00000

c =
 x1 x2
 y1 1.00000 0

x·1

x·2

A1 0

0 A2

x1

x2

B1 0

0 B2

u1

u2

+=

y1

y2

C1 0

0 C2

x1

x2

D1 0

0 D2

u1

u2

+=

append

1-17

 y2 0 0
 y3 0 3.00000

d =
 u1 u2 u3
 y1 0 0 0
 y2 0 10.00000 0
 y3 0 0 4.00000

Continuous-time system.

See Also connect Modeling of block diagram interconnections
feedback Feedback connection
parallel Parallel connection
series Series connection

augstate

1-18

1augstatePurpose Append the state vector to the output vector

Syntax asys = augstate(sys)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), augstate appends the states to the
outputs to form the model

This command prepares the plant so that you can use the feedback command
to close the loop on a full-state feedback .

Limitation Because augstate is only meaningful for state-space models, it cannot be used
with TF, ZPK or FRD models.

See Also feedback Feedback connection
parallel Parallel connection
series Series connection

x· Ax Bu+=

y Cx Du+=

x
y

x· Ax Bu+=

y
x

C
I

x D
0

u+=

u K– x=

balreal

1-19

1balrealPurpose Gramian-based input/output balancing of state-space realizations

Syntax [sysb,g] = balreal(sys)
[sysb,g] = balreal(sys,...

'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

[sysb,g] = balreal(sys,condmax)
[sysb,g,T,Ti] = balreal(sys)

Description [sysb,g] = balreal(sys) computes a balanced realization sysb for the stable
portion of the LTI model sys. balreal handles both continuous and discrete
systems. If sys is not a state-space model, it is first and automatically
converted to state space using ss.

For stable systems, sysb is an equivalent realization for which the
controllability and observability Gramians are equal and diagonal, their
diagonal entries forming the vector G of Hankel singular values. Small entries
in G indicate states that can be removed to simplify the model (use modred to
reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back
to its unstable part to form sysb. The entries of g corresponding to unstable
modes are set to Inf. You can specify additional options for the stable/unstable
decomposition:

[sysb,g] = balreal(sys,...
'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)

See stabsep for more details on these options. The default values are ATOL=0,
RTOL=1e-8, and ALPHA=1e-8.

Use balreal(sys,condmax) to control the condition number of the stable/
unstable decomposition. Increasing condmax helps separate close by stable and
unstable modes at the expense of accuracy. By default condmax=1e8.

[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the
diagonal of the balanced gramian, the state similarity transformation

used to convert sys to sysb, and the inverse transformation .

xb Tx=

Ti T 1–
=

balreal

1-20

If the system is normalized properly, the diagonal g of the joint gramian can be
used to reduce the model order. Because g reflects the combined controllability
and observability of individual states of the balanced model, you can delete
those states with a small g(i) while retaining the most important input-output
characteristics of the original system. Use modred to perform the state
elimination.

There are also overloaded methods available. Type

help ss/balreal
help lti/balreal
help idmodel/balreal

for more information.

Example1 Consider the zero-pole-gain model

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)

Zero/pole/gain:
 (s+10) (s+20.01)

(s+5) (s+9.9) (s+20.1)

A state-space realization with balanced gramians is obtained by

[sysb,g] = balreal(sys)

The diagonal entries of the joint gramian are

g'

ans =
 1.0062e-01 6.8039e-05 1.0055e-05

which indicates that the last two states of sysb are weakly coupled to the input
and output. You can then delete these states by

sysr = modred(sysb,[2 3],'del')

to obtain the following first-order approximation of the original system.

zpk(sysr)

balreal

1-21

Zero/pole/gain:
 1.0001

(s+4.97)

Compare the Bode responses of the original and reduced-order models.

bode(sys,'-',sysr,'x')

Example2 Create this unstable system:

sys1=tf(1,[1 0 -1])

Transfer function:
 1

Frequency (rad/sec)

P
ha

se
 (d

eg
);

M
ag

ni
tu

de
 (d

B
)

Bode Diagrams

−50

−40

−30

−20

−10

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

balreal

1-22

s^2 - 1

Apply balreal to create a balanced gramian realization.

[sysb,g]=balreal(sys1)

a =
 x1 x2
 x1 1 0
 x2 0 -1

b =
 u1
 x1 0.7071
 x2 0.7071

c =
 x1 x2
 y1 0.7071 -0.7071

d =
 u1
 y1 0

Continuous-time model.

g =

 Inf
 0.2500

The unstable pole shows up as Inf in vector g.

Algorithm Consider the model

x· Ax Bu+=

y Cx Du+=

balreal

1-23

with controllability and observability gramians and . The state
coordinate transformation produces the equivalent model

and transforms the gramians to

The function balreal computes a particular similarity transformation
such that

See [1,2] for details on the algorithm.

References [1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, “Computation of System
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987),
pp. 115-122.

[2] Moore, B., “Principal Component Analysis in Linear Systems:
Controllability, Observability, and Model Reduction,” IEEE Transactions on
Automatic Control, AC-26 (1981), pp. 17-31.

[3] Laub, A.J., “Computation of Balancing Transformations,” Proc. ACC, San
Francisco, Vol.1, paper FA8-E, 1980.

See Also gram Controllability and observability gramians
modred Model order reduction
ss Convert LTI model to state space
ssbal Balancing of state-space model using diagonal

similarity

Wc Wo
x Tx=

x· TAT 1– x TBu+=

y CT 1– x Du+=

Wc TWcTT
= , Wo T T– WoT 1–

=

T

Wc Wo diag g()= =

balred

1-24

1balredPurpose Model order reduction

Syntax rsys = balred(sys,ORDERS)
rsys = balred(sys,ORDERS,...,'Elimination',METHOD)
rsys = balred(sys,ORDERS,...,'Balancing',BALDATA)

Description rsys = balred(sys,ORDERS) computes a reduced-order approximation rsys of
the LTI model sys. The desired order (number of states) for rsys is specified
by ORDERS. You can try multiple orders at once by setting ORDERS to a vector of
integers, in which case rsys is a vector of reduced-order models. Use hsvd to
plot the Hankel singular values and pick an adequate approximation order.
States with relatively small Hankel singular values can be safely discarded.

When sys has unstable poles, it is first decomposed into its stable and unstable
parts using stabsep, and only the stable part is approximated. Use

sys = balred(sys,ORDERS,'AbsTol',ATOL,...
'RelTol',RTOL,'Offset',ALPHA)

to specify additional options for the stable/unstable decomposition. See
stabsep for details. The default values are ATOL=0, RTOL=1e-8, and
ALPHA=1e-8.

rsys = balred(sys,ORDERS,...,'Elimination',METHOD) specifies the state
elimination method. Available choices for METHOD include:

• 'MatchDC' : Enforce matching DC gains (default)

• 'Truncate': Simply discard the states associated with small Hankel
singular values. The 'Truncate' method tends to produce a better
approximation in the frequency domain, but the DC gains are not
guaranteed to match.

rsys = balred(sys,ORDERS,...,'Balancing',BALDATA) makes use of the
balancing data BALDATA produced by hsvd. Because hsvd does most of the work
needed to compute rsys, this syntax is more efficient when using hsvd and
balred jointly.

balred uses implicit balancing techniques to compute the reduced- order
approximation rsys.

There is more than one balred method available. Type

balred

1-25

help lti/balred

for more information.

References [1] Varga, A., “Balancing-Free Square-Root Algorithm for Computing Singular
Perturbation Approximations,” Proc. of 30th IEEE CDC, Brighton, UK (1991),
pp. 1062-1065.

See Also hvsd Computes the Hankel singular values of an LTI model
lti/order LTI model order
minreal Minimal realization and pole-zero cancellation
sminreal Compute a structurally minimal realization

bandwidth

1-26

1bandwidthPurpose Compute the frequency response bandwidth

Syntax fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description fb = bandwidth(sys) computes the bandwidth fb of the SISO model sys,
defined as the first frequency where the gain drops below 70.79 percent (-3 dB)
of its DC value. The frequency fb is expressed in radians per second. You can
create sys using tf, ss, or zpk. See ltimodels for details.

fb = bandwidth(sys,dbdrop) further specifies the critical gain drop in dB.
The default value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of LTI models, bandwidth returns an array of
the same size such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,jp))

See Also dcgain Compute the steady-state gain of LTI models
issiso Returns 1 if the system is SISO
ltimodels General information about LTI models

bode

1-27

1bodePurpose Compute the Bode frequency response of LTI models

Syntax bode(sys)
bode(sys,w)

bode(sys1,sys2,...,sysN)
bode(sys1,sys2,...,sysN,w)
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = bode(sys)

Description bode computes the magnitude and phase of the frequency response of LTI
models. When invoked without left-side arguments, bode produces a Bode plot
on the screen. The magnitude is plotted in decibels (dB), and the phase in
degrees. The decibel calculation for mag is computed as 20log10 , where

 is the system’s frequency response. Bode plots are used to analyze
system properties such as the gain margin, phase margin, DC gain, bandwidth,
disturbance rejection, and stability.

bode(sys) plots the Bode response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode
produces an array of Bode plots, each plot showing the Bode response of one
particular I/O channel. The frequency range is determined automatically based
on the system poles and zeros.

bode(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set
w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. All frequencies should be specified in radians/sec.

bode(sys1,sys2,...,sysN) or bode(sys1,sys2,...,sysN,w) plots the Bode
responses of several LTI models on a single figure. All systems must have the
same number of inputs and outputs, but may otherwise be a mix of continuous
and discrete systems. This syntax is useful to compare the Bode responses of
multiple systems.

bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN') specifies which color,
linestyle, and/or marker should be used to plot each system. For example,

H jω()()
H jω()

bode

1-28

bode(sys1,'r--',sys2,'gx')

uses red dashed lines for the first system sys1 and green 'x' markers for the
second system sys2.

When invoked with left-side arguments

[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays with the
frequency as the last dimension (see “Arguments” below for details). You can
convert the magnitude to decibels by

magdb = 20*log10(mag)

Remark If sys is an FRD model, bode(sys,w), w can only include frequencies in
sys.frequency.

Arguments The output arguments mag and phase are 3-D arrays with dimensions

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and
phase of the response at the frequency = w(k).

MIMO systems are treated as arrays of SISO systems and the magnitudes and
phases are computed for each SISO entry hij independently (hij is the transfer
function from input j to output i). The values mag(i,j,k) and phase(i,j,k)
then characterize the response of hij at the frequency w(k).

Example You can plot the Bode response of the continuous SISO system

number of outputs() number of inputs()× length of w()×

ωk

mag(1,1,k) h jωk()=

phase(1,1,k) h jωk() ∠=

mag(i,j,k) hij jωk()=

phase(i,j,k) hij jωk() ∠=

bode

1-29

by typing

g = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(g)

To plot the response on a wider frequency range, for example, from 0.1 to 100
rad/sec, type

bode(g,{0.1 , 100})

You can also discretize this system using zero-order hold and the sample time
 second, and compare the continuous and discretized responses by

typing

gd = c2d(g,0.5)

H s() s2 0.1s 7.5+ +

s4 0.12s3 9s2
+ +

---=

Ts 0.5=

bode

1-30

bode(g,'r',gd,'b--')

Algorithm For continuous-time systems, bode computes the frequency response by
evaluating the transfer function on the imaginary axis . Only
positive frequencies are considered. For state-space models, the frequency
response is

When numerically safe, is diagonalized for maximum speed. Otherwise,
is reduced to upper Hessenberg form and the linear equation
is solved at each frequency point, taking advantage of the Hessenberg
structure. The reduction to Hessenberg form provides a good compromise
between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating
the transfer function on the unit circle. To facilitate interpretation, the
upper-half of the unit circle is parametrized as

H s() s jω=
ω

D C jω A–() 1– B+ , ω 0≥

A A
jω A–()X B=

H z()

z e
jωTs= , 0 ω ωN≤ ≤ π

Ts
------=

bode

1-31

where is the sample time. is called the Nyquist frequency. The
equivalent “continuous-time frequency” is then used as the -axis variable.
Because

is periodic with period , bode plots the response only up to the Nyquist
frequency . If the sample time is unspecified, the default value is
assumed.

Diagnostics If the system has a pole on the axis (or unit circle in the discrete case) and
w happens to contain this frequency point, the gain is infinite, is
singular, and bode produces the warning message

Singularity in freq. response due to jw-axis or unit circle pole.

References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot
sigma Singular value plot

Ts ωN
ω x

H e
jωTs()

2ωN
ωN Ts 1=

jω
jωI A–

bodemag

1-32

1bodemagPurpose Compute the Bode magnitude response of LTI models

Syntax bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)

bodemag(sys1,sys2,...,sysN,w)
bodemag(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

Description bodemag(sys) plots the magnitude of the frequency response of the LTI model
SYS (Bode plot without the phase diagram). The frequency range and number
of points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies between
wmin and wmax (in radians/second).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in
radians/second, at which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response magnitude of
several LTI models sys1,sys2,...,sysN on a single plot. The frequency vector
w is optional. You can also specify a color, line style, and marker for each model,
as in

 bodemag(sys1,'r',sys2,'y--',sys3,'gx').

See Also bode Compute the Bode frequency response of LTI models
ltiview Open an LTI Viewer
ltimodels Help on LTI models

bodeplot

1-33

1bodeplotPurpose Compute the Bode frequency response and return the plot handle

Syntax h = bodeplot(sys)

h = bodeplot(sys1,sys2,...)
h = bodeplot(AX,...)
h = bodeplot(..., plotoptions)
h = bodeplot(sys,w)

Description h = bodeplot(sys) plot the Bode magnitude and phase of an LTI model sys
and returns the plot handle h to the plot. You can use this handle to customize
the plot with the getoptions and setoptions commands. Type

help bodeoptions

for a list of available plot options.

bodeplot(sys) draws the Bode plot of the LTI model sys (created with either
tf, zpk, ss, or frd). The frequency range and number of points are chosen
automatically.

bodeplot(sys1,sys2,...) graphs the Bode response of multiple LTI models
sys1,sys2,... on a single plot. You can specify a color, line style, and marker for
each model, as in

bodeplot(sys1,'r',sys2,'y--',sys3,'gx')

bodeplot(AX,...) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options
specified in plotoptions.

bodeplot(sys,w) draws the Bode plot for frequencies specified by w. When w =
{wmin,wmax}, the Bode plot is drawn for frequencies between wmin and wmax (in
rad/s). When w is a user-supplied vector w of frequencies, in rad/s, the Bode
response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

 Example Use the plot handle to change options in a Bode plot.

sys = rss(5);
h = bodeplot(sys);

bodeplot

1-34

% Change units to Hz and make phase plot invisible
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

See Also bode Bode plots (does not return the plot handle)
getoptions Get plot options from a plot
setoptions Set plot options

c2d

1-35

1c2dPurpose Discretize continuous-time systems

Syntax sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,method)

Description sysd = c2d(sys,Ts) discretizes the continuous-time LTI model sys using
zero-order hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) gives access to alternative discretization
schemes. The string method selects the discretization method among the
following:

Refer to “Continuous/Discrete Conversions of LTI Models” for more detail on
these discretization methods.

'zoh' Zero-order hold. The control inputs are assumed piecewise
constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold, see [1], p.
151). The control inputs are assumed piecewise linear over
the sampling period Ts.

'tustin' Bilinear (Tustin) approximation.

'prewarp' Tustin approximation with frequency prewarping. You must
specify the critical frequency Wc (in rad/sec) as a fourth input
as in

sysd = c2d(sysc,ts,'prewarp',Wc)

'matched' Matched pole-zero method. See [1], p. 147.

c2d

1-36

c2d supports MIMO systems (except for the 'matched' method) as well as LTI
models with delays with some restrictions for 'matched' and 'tustin'
methods.

[sysd,G] = c2d(sys,Ts,method) returns a matrix G that maps the continuous
initial conditions and to their discrete counterparts and
according to

Example Consider the system

with input delay second. To discretize this system using the
triangle approximation with sample time second, type

H = tf([1 -1],[1 4 5],'inputdelay',0.35)

Transfer function:
 s - 1
exp(-0.35*s) * -------------
 s^2 + 4 s + 5

Hd = c2d(H,0.1,'foh')

Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104

 z^6 - 1.629 z^5 + 0.6703 z^4

Sampling time: 0.1

The next command compares the continuous and discretized step responses.

x0 u0 x 0[] u 0[]

u 0[] u0=

x 0[] G
x0

u0

⋅=

H s() s 1–

s2 4s 5+ +
----------------------------=

Td 0.35=
Ts 0.1=

c2d

1-37

step(H,'-',Hd,'--')

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

See Also d2c Discrete to continuous conversion
d2d Resampling of discrete systems-.

canon

1-38

1canonPurpose Compute canonical state-space realizations

Syntax csys = canon(sys,'type')
[csys,T] = canon(sys,'type')

Description canon computes a canonical state-space model for the continuous or discrete
LTI system sys. Two types of canonical forms are supported.

Modal Form
csys = canon(sys,'type') returns a realization csys in modal form, that is,
where the real eigenvalues appear on the diagonal of the matrix and the
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of .
For a system with eigenvalues , the modal matrix is of the
form

Companion Form
csys = canon(sys,'type') produces a companion realization of sys where the
characteristic polynomial of the system appears explicitly in the rightmost
column of the matrix. For a system with characteristic polynomial

the corresponding companion matrix is

A
A

λ1 σ jω λ2,±,() A

λ1 0 0 0

0 σ ω 0
0 ω– σ 0
0 0 0 λ2

A

p s() sn a1sn 1– ... an 1– s an+ + + +=

A

A

0 0 0 an–

1 0 0 .. 0 an 1––

0 1 0 . : :
: 0 . . : :
0 . . 1 0 a2–

0 0 1 a1–

=

canon

1-39

For state-space models sys,

[csys,T] = canon(a,b,c,d,'type')

also returns the state coordinate transformation T relating the original state
vector and the canonical state vector .

This syntax returns T=[] when sys is not a state-space model.

Algorithm Transfer functions or zero-pole-gain models are first converted to state space
using ss.

The transformation to modal form uses the matrix of eigenvectors of the
matrix. The modal form is then obtained as

The state transformation returned is the inverse of .

The reduction to companion form uses a state similarity transformation based
on the controllability matrix [1].

Limitations The modal transformation requires that the matrix be diagonalizable. A
sufficient condition for diagonalizability is that has no repeated eigenvalues.

The companion transformation requires that the system be controllable from
the first input. The companion form is often poorly conditioned for most
state-space computations; avoid using it when possible.

References [1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also ctrb Controllability matrix
ctrbf Controllability canonical form
ss2ss State similarity transformation

x xc

xc Tx=

P A

xc
· P 1– APxc P 1– Bu+=

y CPxc Du+=

T P

A
A

care

1-40

1carePurpose Solve continuous-time algebraic Riccati equations

Syntax [X,L,G] = care(A,B,Q)
[X,L,G] = care(A,B,Q,R,S,E)
[X,L,G,report] = care(A,B,Q,...)

[X1,X2,D,L] = care(A,B,Q,...,'factor')

Description [X,L,G] = care(A,B,Q) computes the unique solution X of the continuous-time
algebraic Riccati equation

The care function also returns the gain matrix, .

[X,L,G] = care(A,B,Q,R,S,E) solves the more general Riccati equation

When omitted, R, S, and E are set to the default values R=I, S=0,and E=I. Along
with the solution X, care returns the gain matrix and a
vector L of closed-loop eigenvalues, where

L=eig(A-B*G,E)

[X,L,G,report] = care(A,B,Q, ...) returns a diagnosis report with:

• −1 when the associated Hamiltonian pencil has eigenvalues on or very near
the imaginary axis (failure)

• −2 when there is no finite stabilizing solution X

• The Frobenius norm of the relative residual if X exists and is finite.

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = care(A,B,Q,...,'factor') returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D.

The vector L contains the closed-loop eigenvalues. All outputs are empty when
the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

ATX XA XBBTX– Q+ + 0=

G R 1– B
T

XE=

ATXE ETXA ETXB S+()R 1– BTXE ST
+()– Q+ + 0=

G R 1– BTXE ST
+()=

care

1-41

Examples Example 1
Given

you can solve the Riccati equation

by

a = [-3 2;1 1]
b = [0 ; 1]
c = [1 -1]
r = 3
[x,l,g] = care(a,b,c'*c,r)

This yields the solution

x

x =
 0.5895 1.8216
 1.8216 8.8188

You can verify that this solution is indeed stabilizing by comparing the
eigenvalues of a and a-b*g.

[eig(a) eig(a-b*g)]

ans =
 -3.4495 -3.5026
 1.4495 -1.4370

Finally, note that the variable l contains the closed-loop eigenvalues
eig(a-b*g).

l

l =
 -3.5026

A 3– 2
1 1

= B 0
1

= C 1 1–= R 3=

ATX XA XBR 1– B
T

X– CTC+ + 0=

care

1-42

 -1.4370

Example 2
To solve the -like Riccati equation

rewrite it in the care format as

You can now compute the stabilizing solution by

B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]

X = care(A,B,C'*C,R)

Algorithm care implements the algorithms described in [1]. It works with the
Hamiltonian matrix when is well-conditioned and ; otherwise it uses
the extended Hamiltonian pencil and QZ algorithm.

Limitations The pair must be stabilizable (that is, all unstable modes are
controllable). In addition, the associated Hamiltonian matrix or pencil must
have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold
are detectable when and , or

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984),
pp. 1746-1754.

H∞

ATX XA X γ 2– B1B1
T B2B2

T
–()X+ + CTC+ 0=

ATX XA X B1 B2,[] γ 2– I – 0
0 I

1–
B1

T

B2
T

X– CTC+ + 0=

B
R

⎧ ⎪ ⎨ ⎪ ⎩
⎧ ⎪ ⎨ ⎪ ⎩

X

R E I=

A B,()

Q A,() S 0= R 0>

Q S

ST R
0>

care

1-43

See Also dare Solve discrete-time Riccati equations
lyap Solve continuous-time Lyapunov equations

chgunits

1-44

1chgunitsPurpose Convert the frequency units of an FRD model

Syntax sys = chgunits(sys,units)

Description sys = chgunits(sys,units) converts the units of the frequency points stored
in an FRD model, sys to units, where units is either of the strings 'Hz' or
'rad/s'. This operation changes the assigned frequencies by applying the
appropriate (2*pi) scaling factor, and the 'Units' property is updated.

If the 'Units' field already matches units, no conversion is made.

Example w = logspace(1,2,2);
sys = rss(3,1,1);
sys = frd(sys,w)

From input 'input 1' to:

 Frequency(rad/s) output 1
 ---------------- --------

 10 0.293773+0.001033i

 100 0.294404+0.000109i

Continuous-time frequency response data.

sys = chgunits(sys,'Hz')
sys.freq

ans =
 1.5915
 15.9155

See Also frd Create or convert to an FRD model
get Get the properties of an LTI model
set Set the properties of an LTI model

conj

1-45

1conjPurpose Form a model with complex conjugate coefficients

Syntax sysc = conj(sys)

Description sysc = conj(sys) is an constructs a complex conjugate model sysc by applying
complex conjugation to all coefficients of the LTI model sys. This function
accepts LTI models in transfer function (TF), zero/pole/gain (ZPK), and state
space (SS) formats.

Example If sys is the transfer function

(2+i)/(s+i)

then conj(sys) produces the transfer function

(2-i)/(s-i)

This operation is useful for manipulating partial fraction expansions.

See Also append Append LTI systems
ss Specify or convert to state-space form
tf Specify or convert to transfer function form
zpk Specify or convert to zero-pole-gain form

connect

1-46

1connectPurpose Derive state-space model from block diagram description

Syntax sysc = connect(sys,Q,inputs,outputs)

Description Complex dynamical systems are often given in block diagram form. For
systems of even moderate complexity, it can be quite difficult to find the
state-space model required in order to bring certain analysis and design tools
into use. Starting with a block diagram description, you can use append and
connect to construct a state-space model of the system.

First, use

sys = append(sys1,sys2,...,sysN)

to specify each block sysj in the diagram and form a block-diagonal,
unconnected LTI model sys of the diagram.

Next, use

sysc = connect(sys,Q,inputs,outputs)

to connect the blocks together and derive a state-space model sysc for the
overall interconnection. The arguments Q, inputs, and outputs have the
following purpose:

• The matrix Q indicates how the blocks on the diagram are connected. It has
a row for each input of sys, where the first element of each row is the input
number. The subsequent elements of each row specify where the block input
gets its summing inputs; negative elements indicate minus inputs to the
summing junction. For example, if input 7 gets its inputs from the outputs 2,
15, and 6, where the input from output 15 is negative, the corresponding row
of Q is [7 2 -15 6]. Short rows can be padded with trailing zeros (see
example below).

• Given sys and Q, connect computes a state-space model of the
interconnection with the same inputs and outputs as sys (that is, the
concatenation of all block inputs and outputs). The index vectors inputs and
outputs then indicate which of the inputs and outputs in the large
unconnected system are external inputs and outputs of the block diagram.
For example, if the external inputs are inputs 1, 2, and 15 of sys, and the
external outputs are outputs 2 and 7 of sys, then inputs and outputs should
be set to

connect

1-47

inputs = [1 2 15];
outputs = [2 7];

The final model sysc has these particular inputs and outputs.

Since it is easy to make a mistake entering all the data required for a large
model, be sure to verify your model in as many ways as you can. Here are some
suggestions:

• Make sure the poles of the unconnected model sys match the poles of the
various blocks in the diagram.

• Check that the final poles and DC gains are reasonable.

• Plot the step and bode responses of sysc and compare them with your
expectations.

The connect function does not support delays in a reliable way. If you need to
work extensively with block diagrams or you need to interconnect models with
time delays, Simulink® is a much easier and more comprehensive tool for
model building.

Example Consider the following block diagram.

Given the matrices of the state-space model sys2,

A = [-9.0201 17.7791
-1.6943 3.2138];

B = [-.5112 .5362

x· Ax Bu+=

y Cx Du+=

2 s 1+()
s 2+

10
s 5+

y1

y2u2

u1

uc

sys1

sys2

sys3

+

–

connect

1-48

-.002 -1.8470];
C = [-3.2897 2.4544

-13.5009 18.0745];
D = [-.5476 -.1410

-.6459 .2958];

Define the three blocks as individual LTI models.

sys1 = tf(10,[1 5],'inputname','uc')
sys2 = ss(A,B,C,D,'inputname',{'u1' 'u2'},...

'outputname',{'y1' 'y2'})
sys3 = zpk(-1,-2,2)

Next append these blocks to form the unconnected model sys.

sys = append(sys1,sys2,sys3)

This produces the block-diagonal model

sys

a =
 x1 x2 x3 x4
 x1 -5 0 0 0
 x2 0 -9.0201 17.779 0
 x3 0 -1.6943 3.2138 0
 x4 0 0 0 -2

b =
 uc u1 u2 ?
 x1 4 0 0 0
 x2 0 -0.5112 0.5362 0
 x3 0 -0.002 -1.847 0
 x4 0 0 0 1.4142

c =
 x1 x2 x3 x4
 ? 2.5 0 0 0
 y1 0 -3.2897 2.4544 0
 y2 0 -13.501 18.075 0

connect

1-49

 ? 0 0 0 -1.4142

d =
 uc u1 u2 ?
 ? 0 0 0 0
 y1 0 -0.5476 -0.141 0
 y2 0 -0.6459 0.2958 0
 ? 0 0 0 2

Continuous-time system.

Note that the ordering of the inputs and outputs is the same as the block
ordering you chose. Unnamed inputs or outputs are denoted b.

To derive the overall block diagram model from sys, specify the
interconnections and the external inputs and outputs. You need to connect
outputs 1 and 4 into input 3 (u2), and output 3 (y2) into input 4. The
interconnection matrix Q is therefore

Q = [3 1 -4
4 3 0];

Note that the second row of Q has been padded with a trailing zero. The block
diagram has two external inputs uc and u1 (inputs 1 and 2 of sys), and two
external outputs y1 and y2 (outputs 2 and 3 of sys). Accordingly, set inputs
and outputs as follows.

inputs = [1 2];
outputs = [2 3];

You can obtain a state-space model for the overall interconnection by typing

sysc = connect(sys,Q,inputs,outputs)

a =
 x1 x2 x3 x4
 x1 -5 0 0 0
 x2 0.84223 0.076636 5.6007 0.47644
 x3 -2.9012 -33.029 45.164 -1.6411
 x4 0.65708 -11.996 16.06 -1.6283

connect

1-50

b =
 uc u1
 x1 4 0
 x2 0 -0.076001
 x3 0 -1.5011
 x4 0 -0.57391

c =
 x1 x2 x3 x4
 y1 -0.22148 -5.6818 5.6568 -0.12529
 y2 0.46463 -8.4826 11.356 0.26283

d =
 uc u1
 y1 0 -0.66204
 y2 0 -0.40582

Continuous-time system.

Note that the inputs and outputs are as desired.

References [1] Edwards, J.W., “A Fortran Program for the Analysis of Linear Continuous
and Sampled-Data Systems,” NASA Report TM X56038, Dryden Research
Center, 1976.

See Also append Append LTI systems
feedback Feedback connection
minreal Minimal state-space realization
parallel Parallel connection
series Series connection

covar

1-51

1covarPurpose Output and state covariance of a system driven by white noise

Syntax [P,Q] = covar(sys,W)

Description covar calculates the stationary covariance of the output of an LTI model sys
driven by Gaussian white noise inputs . This function handles both
continuous- and discrete-time cases.

P = covar(sys,W) returns the steady-state output response covariance

given the noise intensity

[P,Q] = covar(sys,W) also returns the steady-state state covariance

when sys is a state-space model (otherwise Q is set to []).

When applied to an N-dimensional LTI array sys, covar returns
multidimensional arrays P, Q such that

P(:,:,i1,...iN) and Q(:,:,i1,...iN) are the covariance matrices for the
model sys(:,:,i1,...iN).

Example Compute the output response covariance of the discrete SISO system

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)

and MATLAB® returns

y
w

P E yyT()=

E w t()w τ()T() W δ t τ–()= (continuous time)

E w k[]w l[]T() W δkl= (discrete time)

Q E xxT()=

H z() 2z 1+

z2 0.2z 0.5+ +
-------------------------------------- ,= Ts 0.1=

covar

1-52

p =
30.3167

You can compare this output of covar to simulation results.

randn('seed',0)
w = sqrt(5)∗randn(1,1000); % 1000 samples

% Simulate response to w with LSIM:
y = lsim(sys,w);

% Compute covariance of y values
psim = sum(y .∗ y)/length(w);

This yields

psim =
32.6269

The two covariance values p and psim do not agree perfectly due to the finite
simulation horizon.

Algorithm Transfer functions and zero-pole-gain models are first converted to state space
with ss.

For continuous-time state-space models

 is obtained by solving the Lyapunov equation

The output response covariance is finite only when and then
.

In discrete time, the state covariance solves the discrete Lyapunov equation

and is given by

x· Ax Bw+=

y Cx Dw+=

Q

AQ QAT BWBT
+ + 0=

P D 0=
P CQCT

=

AQAT Q– BWBT
+ 0=

P P CQCT DWDT
+=

covar

1-53

Note that is well defined for nonzero in the discrete case.

Limitations The state and output covariances are defined for stable systems only. For
continuous systems, the output response covariance is finite only when the

 matrix is zero (strictly proper system).

References [1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975, pp. 458-459.

See Also dlyap Solver for discrete-time Lyapunov equations
lyap Solver for continuous-time Lyapunov equations

P D

P
D

ctrb

1-54

1ctrbPurpose Form the controllability matrix

Syntax Co = ctrb(A,B)
Co = ctrb(sys)

Description ctrb computes the controllability matrix for state-space systems. For an
n-by-n matrix A and an n-by-m matrix B, ctrb(A,B) returns the controllability
matrix

(1-1)

where has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI
object sys. This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Example Check if the system with the following data

A =
 1 1
 4 -2

B =
 1 -1
 1 -1

is controllable. Type

Co=ctrb(A,B);

% Number of uncontrollable states
unco=length(A)-rank(Co)

and MATLAB returns

unco =
 1

Co B AB A2B … An 1– B=

Co

ctrb

1-55

Limitations Estimating the rank of the controllability matrix is ill-conditioned; that is, it is
very sensitive to roundoff errors and errors in the data. An indication of this
can be seen from this simple example.

This pair is controllable if but if , where eps is the relative
machine precision. ctrb(A,B) returns

which is not full rank. For cases like these, it is better to determine the
controllability of a system using ctrbf.

See Also ctrbf Compute the controllability staircase form
obsv Compute the observability matrix

A 1 δ
0 1

,= B 1
δ

=

δ 0≠ δ eps<

B AB
1 1
δ δ

=

ctrbf

1-56

1ctrbfPurpose Compute the controllability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C,tol)

Description If the controllability matrix of has rank , where n is the size of
, then there exists a similarity transformation such that

where is unitary, and the transformed system has a staircase form, in which
the uncontrollable modes, if there are any, are in the upper left corner.

where is controllable, all eigenvalues of are uncontrollable, and

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system
represented by A, B, and C into the controllability staircase form, Abar, Bbar,
and Cbar, described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the order of the system represented by A. Each
entry of k represents the number of controllable states factored out during each
step of the transformation matrix calculation. The number of nonzero elements
in k indicates how many iterations were necessary to calculate T, and sum(k) is
the number of states in , the controllable portion of Abar.

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(A,1)*eps.

Example Compute the controllability staircase form for

A =
 1 1
 4 -2

A B,() r n≤
A

A TATT,= B TB,= C CTT
=

T

A
Auc 0

A21 Ac

,= B
0

Bc
,= C Cnc Cc=

Ac Bc,() Auc

Cc sI Ac–() 1– Bc C sI A–() 1– B.=

Ac

ctrbf

1-57

B =
 1 -1
 1 -1

C =
 1 0
 0 1

and locate the uncontrollable mode.

[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =
 -3.0000 0
 -3.0000 2.0000

Bbar =
 0.0000 0.0000
 1.4142 -1.4142

Cbar =
 -0.7071 0.7071
 0.7071 0.7071

T =
 -0.7071 0.7071
 0.7071 0.7071
k =
 1 0

The decomposed system Abar shows an uncontrollable mode located at –3 and
a controllable mode located at 2.

Algorithm ctrbf is an M-file that implements the Staircase Algorithm of [1].

References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.

See Also ctrb Form the controllability matrix
minreal Minimum realization and pole-zero cancellation

d2c

1-58

1d2cPurpose Convert discrete-time LTI models to continuous time

Syntax sysc = d2c(sysd)
sysc = d2c(sysd,method)

Description d2c converts LTI models from discrete to continuous time using one of the
following conversion methods:

The string method specifies the conversion method. If method is omitted then
zero-order hold ('zoh') is assumed. See “Continuous/Discrete Conversions of
LTI Models” for more details on the conversion methods.

Example Consider the discrete-time model with transfer function

and sample time second. You can derive a continuous-time
zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hc with the zero-order hold method (this is the
default method) and sampling period gives back the original discrete
model . To see this, type

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H,'tustin')

As with zero-order hold, the inverse discretization operation

'zoh' Zero-order hold on the inputs. The control inputs are
assumed piecewise constant over the sampling period.

'tustin' Bilinear (Tustin) approximation to the derivative.

'prewarp' Tustin approximation with frequency prewarping.

'matched' Matched pole-zero method of [1] (for SISO systems only).

H z() z 1–

z2 z 0.3+ +
-----------------------------=

Ts 0.1=

Ts 0.1=
H z()

d2c

1-59

c2d(Hc,0.1,'tustin')

gives back the original .

Algorithm The 'zoh' conversion is performed in state space and relies on the matrix
logarithm (see logm in the MATLAB documentation).

Limitations The Tustin approximation is not defined for systems with poles at and
is ill-conditioned for systems with poles near .

The zero-order hold method cannot handle systems with poles at . In
addition, the 'zoh' conversion increases the model order for systems with
negative real poles, [2]. This is necessary because the matrix logarithm maps
real negative poles to complex poles. As a result, a discrete model with a single
pole at would be transformed to a continuous model with a single
complex pole at . Such a model is not meaningful
because of its complex time response.

To ensure that all complex poles of the continuous model come in conjugate
pairs, d2c replaces negative real poles with a pair of complex conjugate
poles near . The conversion then yields a continuous model with higher
order. For example, the discrete model with transfer function

and sample time 0.1 second is converted by typing

Ts = 0.1
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H)

MATLAB responds with

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:
 -33.6556 (s-6.273) (s^2 + 28.29s + 1041)
--
(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)

Convert Hc back to discrete time by typing

H z()

z 1–=
z 1–=

z 0=

z 0.5–=
0.5–()log 0.6931– jπ+≈

z α–=
α–

H z() z 0.2+

z 0.5+() z2 z 0.4+ +()
---=

d2c

1-60

c2d(Hc,Ts)

yielding

Zero/pole/gain:
 (z+0.5) (z+0.2)

(z+0.5)^2 (z^2 + z + 0.4)

Sampling time: 0.1

This discrete model coincides with after canceling the pole/zero pair at
.

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Kollár, I., G.F. Franklin, and R. Pintelon, “On the Equivalence of z-domain
and s-domain Models in System Identification,” Proceedings of the IEEE
Instrumentation and Measurement Technology Conference, Brussels, Belgium,
June, 1996, Vol. 1, pp. 14-19.

See Also c2d Continuous- to discrete-time conversion
d2d Resampling of discrete models
logm Matrix logarithm

H z()
z 0.5–=

d2d

1-61

1d2dPurpose Resample discrete-time LTI models or add input delays

Syntax sys1 = d2d(sys,Ts)

Description sys1 = d2d(sys,Ts) resamples the discrete-time LTI model sys to produce an
equivalent discrete-time model sys1 with the new sample time Ts (in seconds).
The resampling assumes zero-order hold on the inputs and is equivalent to
consecutive d2c and c2d conversions.

sys1 = c2d(d2c(sys),Ts)

Example Consider the zero-pole-gain model

with sample time 0.1 second. You can resample this model at 0.05 second by
typing

H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)

Zero/pole/gain:
(z-0.8243)

(z-0.7071)

Sampling time: 0.05

Note that the inverse resampling operation, performed by typing d2d(H2,0.1),
yields back the initial model .

Zero/pole/gain:
(z-0.7)

(z-0.5)

Sampling time: 0.1

See Also c2d Continuous- to discrete-time conversion
d2c Discrete- to continuous-time conversion

H z() z 0.7–
z 0.5–
-----------------=

H z()

damp

1-62

1dampPurpose Compute damping factors and natural frequencies

Syntax [Wn,Z] = damp(sys)
[Wn,Z,P] = damp(sys)

Description damp calculates the damping factor and natural frequencies of the poles of an
LTI model sys. When invoked without lefthand arguments, a table of the
eigenvalues in increasing frequency, along with their damping factors and
natural frequencies, is displayed on the screen.

[Wn,Z] = damp(sys) returns column vectors Wn and Z containing the natural
frequencies and damping factors of the poles of sys. For discrete-time
systems with poles and sample time , damp computes “equivalent”
continuous-time poles by solving

The values Wn and Z are then relative to the continuous-time poles . Both Wn
and Z are empty if the sample time is unspecified.

[Wn,Z,P] = damp(sys) returns an additional vector P containing the (true)
poles of sys. Note that P returns the same values as pole(sys) (up to
reordering).

Example Compute and display the eigenvalues, natural frequencies, and damping
factors of the continuous transfer function

Type

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1

 s^2 + 2 s + 3

Type

ωn ζ
z Ts

s

z e
sTs=

s

H s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

damp

1-63

damp(H)

and MATLAB returns

Eigenvalue Damping Freq. (rad/s)

-1.00e+000 + 1.41e+000i 5.77e-001 1.73e+000
-1.00e+000 - 1.41e+000i 5.77e-001 1.73e+000

See Also eig Calculate eigenvalues and eigenvectors
esort,dsort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros

dare

1-64

1darePurpose Solve discrete-time algebraic Riccati equations (DARE)

Syntax [X,L,G] = dare(A,B,Q,R)
[X,L,G] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...)
[X1,X2,L,report] = dare(A,B,Q,...,'factor')

Description [X,L,G] = dare(A,B,Q,R) computes the unique stabilizing solution X of the
discrete-time algebraic Riccati equation

The dare function also returns the gain matrix, , and
the vector L of closed loop eigenvalues, where

L=eig(A-B*G,E)

[X,L,G] = dare(A,B,Q,R,S,E) solves the more general discrete-time
algebraic Riccati equation,

or, equivalently, if R is nonsingular,

where . When omitted, R, S, and E are set to the default values
R=I, S=0, and E=I.

The dare function returns the corresponding gain matrix

and a vector L of closed-loop eigenvalues, where

L= eig(A-B*G,E)

[X,L,G,report] = dare(A,B,Q,...) returns a diagnosis report with value:

• −1 when the associated symplectic pencil has eigenvalues on or very near the
unit circle

ATXA X– ATXB BTXB R+()
1–
BTXA– Q+ 0=

G BTXB R+()
1–
BTXA=

ATXA ETXE– ATXB S+() BTXB R+()
1–

BTXA ST
+()– Q+ 0=

ETXE FT
= XF FTXB BTXB R+()

1–
– BTXF Q SR 1– ST

–+ +

F A BR 1– S–=

G BTXB R+()
1–

BTXA ST
+()=

dare

1-65

• −2 when there is no finite stabilizing solution X

• The Frobenius norm if X exists and is finite

[X1,X2,L,report] = dare(A,B,Q,...,'factor') returns two matrices, X1
and X2, and a diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector
L contains the closed-loop eigenvalues. All outputs are empty when the
associated Symplectic matrix has eigenvalues on the unit circle.

Algorithm dare implements the algorithms described in [1]. It uses the QZ algorithm to
deflate the extended symplectic pencil and compute its stable invariant
subspace.

Limitations The pair must be stabilizable (that is, all eigenvalues of outside the
unit disk must be controllable). In addition, the associated symplectic pencil
must have no eigenvalue on the unit circle. Sufficient conditions for this to hold
are detectable when and , or

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp.
1746-1754.

See Also care Solve continuous-time algebraic Riccati equations
dlyap Solve discrete-time Lyapunov equations
gdare Solve generalized discrete-time algebraic Riccati

equations

A B,() A

Q A,() S 0= R 0>

Q S

ST R
0>

dcgain

1-66

1dcgainPurpose Compute low frequency (DC) gain of LTI system

Syntax k = dcgain(sys)

Description k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time
The continuous-time DC gain is the transfer function value at the frequency

. For state-space models with matrices , this value is

Discrete Time
The discrete-time DC gain is the transfer function value at . For
state-space models with matrices , this value is

Remark The DC gain is infinite for systems with integrators.

Example To compute the DC gain of the MIMO transfer function

type

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])]
dcgain(H)

ans =
 1.0000 -0.3333
 1.0000 -0.6667

See Also evalfr Evaluates frequency response at single frequency
norm LTI system norms

s 0= A B C D, , ,()

K D CA 1– B–=

z 1=
A B C D, , ,()

K D C I A–() 1– B+=

H s()
1 s 1–

s2 s 3+ +

1
s 1+
------------ s 2+

s 3–

=

delay2z

1-67

1delay2zPurpose Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or
replace delays of FRD models by a phase shift

Syntax sys = delay2z(sys)

Description sys = delay2z(sys) maps all time delays to poles at z=0 for discrete-time TF,
ZPK, or SS models sys. Specifically, a delay of k sampling periods is replaced
by (1/z)^k in the transfer function corresponding to the model.

For FRD models, delay2z absorbs all time delays into the frequency response
data, and is applicable to both continuous- and discrete-time FRDs.

Example z=tf('z',-1);
sys=(-.4*z -.1)/(z^2 + 1.05*z + .08)

Transfer function:

-0.4 z - 0.1

z^2 + 1.05 z + 0.08

Sampling time: unspecified

sys.InputDelay = 1;
sys = delay2z(sys)

Transfer function:

 -0.4 z - 0.1

z^3 + 1.05 z^2 + 0.08 z

Sampling time: unspecified

See Also hasdelay True for LTI models with delays
pade Pade approximation of time delays
totaldelay Combine delays for an LTI model

dlqr

1-68

1dlqrPurpose Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant

Syntax [K,S,e] = dlqr(a,b,Q,R)
[K,S,e] = dlqr(a,b,Q,R,N)

Description [K,S,e] = dlqr(a,b,Q,R,N) calculates the optimal gain matrix K such that
the state-feedback law

minimizes the quadratic cost function

for the discrete-time state-space mode

l

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, dlqr returns the infinite horizon
solution S of the associated discrete-time Riccati equation

and the closed-loop eigenvalues e = eig(a-b*K). Note that K is derived from
S by

Limitations The problem data must satisfy:

• The pair is stabilizable.

• and .

• has no unobservable mode on the unit circle.

See Also dare Solve discrete Riccati equations
lqgreg LQG regulator

u n[] Kx n[]–=

J u() x n[]TQx n[] u n[]TRu n[] 2x n[]TNu n[]+ +()

n 1=

∞

∑=

x n 1+[] Ax n[] Bu n[]+=

ATSA S– ATSB N+() BTSB R+()
1–

BTSA NT
+()– Q+ 0=

K BTSB R+()
1–

BTSA NT
+()=

A B,()
R 0> Q NR 1– NT

– 0≥
Q NR 1– NT

– A BR 1– NT
–,()

dlqr

1-69

lqr State-feedback LQ regulator for continuous plant
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting

dlyap

1-70

1dlyapPurpose Solve discrete-time Lyapunov equations

Syntax X = dlyap(A,Q)
X = dlyap(A,B,C)
X = dlyap(A,Q,[],E)

Description X = dlyap(A,Q) solves the discrete-time Lyapunov equation

where and are -by- matrices.

The solution is symmetric when is symmetric, and positive definite when
 is positive definite and has all its eigenvalues inside the unit disk.

X = dlyap(A,B,C) solves the Sylvester equation

where A, B, and C must have compatible dimensions but need not be square.

X = dlyap(A,Q,[],E) solves the generalized discrete-time Lyapunov equation

where Q is a symmetric matrix. The empty square brackets, [], are mandatory.
If you place any values inside them, the function will error out.

Algorithm dlyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations
and SB04QD (SLICOT) for Sylvester equations.

Diagnostics The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues
 of satisfy for all .

If this condition is violated, dlyap produces the error message

Solution does not exist or is not unique.

See Also covar Covariance of system response to white noise
lyap Solve continuous Lyapunov equations

AXAT X– Q+ 0=

A Q n n

X Q
Q A

AXBT X– C+ 0=

AXAT EXET
– Q+ 0=

α1 α2 ... αn, , , A αiαj 1≠ i j,()

dlyapchol

1-71

1dlyapcholPurpose Square-root solver for continuous-time Lyapunov equations

Syntax R = dlyapchol(A,B)
R = dlyapchol(A,B,E)

Description R = dlyapchol(A,B) computes a Cholesky factorization X = R'*R of the
solution X to the Lyapunov matrix equation:

A*X*A'- X + B*B' = 0

All eigenvalues of A matrix must lie in the open unit disk for R to exist.

X = dlyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving
the Sylvester equation

A*X*A' - E*X*E' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open unit disk for R to exist.

Algorithm dlyapchol uses SLICOT routines SB03OD and SG03BD.

See Also dlyap Solver for discrete-time Lyapunov equations
lyapchol Square-root solver for continuous-time Lyapunov

equations

drss

1-72

1drssPurpose Generate stable random discrete test models

Syntax sys = drss(n)
sys = drss(n,p)
sys = drss(n,p,m)
sys = drss(n,p,m,s1,...sn)

Description sys = drss(n) produces a random n-th order stable model with one input and
one output, and returns the model in the state-space object sys.

drss(n,p) produces a random n-th order stable model with one input and p
outputs.

drss(n,m,p) generates a random n-th order stable model with m inputs and p
outputs.

drss(n,p,m,s1,...sn) generates a s1–by–sn array of random n-th order
stable model with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has
an unspecified sampling time. To generate transfer function or zero-pole-gain
systems, convert sys using tf or zpk.

Example Generate a random discrete LTI system with three states, two inputs, and two
outputs.

sys = drss(3,2,2)

a =
 x1 x2 x3
 x1 0.38630 -0.21458 -0.09914
 x2 -0.23390 -0.15220 -0.06572
 x3 -0.03412 0.11394 -0.22618

b =
 u1 u2
 x1 0.98833 0.51551
 x2 0 0.33395
 x3 0.42350 0.43291

drss

1-73

c =
 x1 x2 x3
 y1 0.22595 0.76037 0
 y2 0 0 0

d =
 u1 u2
 y1 0 0.68085
 y2 0.78333 0.46110

Sampling time: unspecified
Discrete-time system.

See Also rss Generate stable random continuous test models
tf Convert LTI systems to transfer functions form
zpk Convert LTI systems to zero-pole-gain form

dsort

1-74

1dsortPurpose Sort discrete-time poles by magnitude

Syntax s = dsort(p)
[s,ndx] = dsort(p)

Description dsort sorts the discrete-time poles contained in the vector p in descending
order by magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s.

[s,ndx] = dsort(p) also returns the vector ndx containing the indices used in
the sort.

Example Sort the following discrete poles.

p =
 -0.2410 + 0.5573i
 -0.2410 - 0.5573i
 0.1503
 -0.0972
 -0.2590

s = dsort(p)

s =
 -0.2410 + 0.5573i
 -0.2410 - 0.5573i
 -0.2590
 0.1503
 -0.0972

Limitations The poles in the vector p must appear in complex conjugate pairs.

See Also eig Calculate eigenvalues and eigenvectors
esort, sort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros

dss

1-75

1dssPurpose Specify descriptor state-space models

Syntax sys = dss(a,b,c,d,e)
sys = dss(a,b,c,d,e,Ts)
sys = dss(a,b,c,d,e,ltisys)

sys = dss(a,b,c,d,e,'Property1',Value1,...,'PropertyN',ValueN)
sys = dss(a,b,c,d,e,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description sys = dss(a,b,c,d,e) creates the continuous-time descriptor state-space
model

The matrix must be nonsingular. The output sys is an SS model storing the
model data (see “LTI Objects” on page 2-3). Note that ss produces the same
type of object. If the matrix , do can simply set d to the scalar 0 (zero).

sys = dss(a,b,c,d,e,Ts) creates the discrete-time descriptor model

with sample time Ts (in seconds).

sys = dss(a,b,c,d,e,ltisys) creates a descriptor model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “LTI Properties” on page 2-26 for an overview of generic LTI properties.

Any of the previous syntaxes can be followed by property name/property value
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See set and the example
below for details.

Example The command

Ex· Ax Bu+=

y Cx Du+=

E

D 0=

Ex n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

dss

1-76

sys = dss(1,2,3,4,5,'td',0.1,'inputname','voltage',...
'notes','Just an example')

creates the model

with a 0.1 second input delay. The input is labeled 'voltage', and a note is
attached to tell you that this is just an example.

See Also dssdata Retrieve matrices of descriptor model
get Get properties of LTI models
set Set properties of LTI models
ss Specify (regular) state-space models

5x· x 2u+=

y 3x 4u+=

A B C D E, , , ,

dssdata

1-77

1dssdataPurpose Quick access to descriptor state-space data

Syntax [a,b,c,d,e] = dssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)

Description [a,b,c,d,e] = dssdata(sys) extracts the descriptor matrix data
 from the state-space model sys. If sys is a transfer function or

zero-pole-gain model, it is first converted to state space. Note that dssdata is
then equivalent to ssdata because it always returns .

[a,b,c,d,e,Ts] = dssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.notes

See Also dss Specify descriptor state-space models
get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D E, , , ,()

E I=

esort

1-78

1esortPurpose Sort continuous-time poles by real part

Syntax s = esort(p)
[s,ndx] = esort(p)

Description esort sorts the continuous-time poles contained in the vector p by real part.
Unstable eigenvalues appear first and the remaining poles are ordered by
decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted
eigenvalues in s.

[s,ndx] = esort(p) returns the additional argument ndx, a vector containing
the indices used in the sort.

Example Sort the following continuous eigenvalues.

p
p =
 -0.2410+ 0.5573i
 -0.2410- 0.5573i
 0.1503
 -0.0972
 -0.2590

esort(p)

ans =
 0.1503
 -0.0972
 -0.2410+ 0.5573i
 -0.2410- 0.5573i
 -0.2590

Limitations The eigenvalues in the vector p must appear in complex conjugate pairs.

See Also dsort, sort Sort system poles
eig Calculate eigenvalues and eigenvectors
pole Compute system poles
pzmap Pole-zero map

esort

1-79

zero Compute (transmission) zeros

estim

1-80

1estimPurpose Form state estimator given estimator gain

Syntax est = estim(sys,L)
est = estim(sys,L,sensors,known)

Description est = estim(sys,L) produces a state/output estimator est given the plant
state-space model sys and the estimator gain L. All inputs of sys are
assumed stochastic (process and/or measurement noise), and all outputs are
measured. The estimator est is returned in state-space form (SS object). For a
continuous-time plant sys with equations

estim generates plant output and state estimates and as given by the
following model.

The discrete-time estimator has similar equations.

est = estim(sys,L,sensors,known) handles more general plants sys with
both known inputs and stochastic inputs , and both measured outputs
and nonmeasured outputs .

The index vectors sensors and known specify which outputs are measured
and which inputs are known. The resulting estimator est uses both and

 to produce the output and state estimates.

w
y

x· Ax Bw+=

y Cx Dw+=

ŷ x̂

x̂
·

Ax̂ L y Cx̂–()+=

ŷ
x̂

C
I

x̂=

u w y
z

x· Ax B1w B2u+ +=

z
y

C1

C2

x
D11

D21

w
D12

D22

u+ +=

y
u u

y

estim

1-81

estim handles both continuous- and discrete-time cases. You can use the
functions place (pole placement) or kalman (Kalman filtering) to design an
adequate estimator gain . Note that the estimator poles (eigenvalues of

) should be faster than the plant dynamics (eigenvalues of) to ensure
accurate estimation.

Example Consider a state-space model sys with seven outputs and four inputs. Suppose
you designed a Kalman gain matrix using outputs 4, 7, and 1 of the plant as
sensor measurements, and inputs 1,4, and 3 of the plant as known
(deterministic) inputs. You can then form the Kalman estimator by

sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)

See the function kalman for direct Kalman estimator design.

See Also kalman Design Kalman estimator
place Pole placement
reg Form regulator given state-feedback and estimator

gains

x̂
·

Ax̂ B2u L y C2x̂ D22u––()+ +=

ŷ
x̂

C2

I
x̂ D22

0
u+=

est
u (known)

y (sensors)

ŷ

x̂

L
A LC– A

L

evalfr

1-82

1evalfrPurpose Evaluate frequency response at a single (complex) frequency

Syntax frsp = evalfr(sys,f)

Description frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK
model sys at the complex number f. For state-space models with data

, the result is

evalfr is a simplified version of freqresp meant for quick evaluation of the
response at a single point. Use freqresp to compute the frequency response
over a set of frequencies.

Example To evaluate the discrete-time transfer function

at , type

H = tf([1 -1],[1 1 1],-1)
z = 1+j
evalfr(H,z)

ans =
 2.3077e-01 + 1.5385e-01i

Limitations The response is not finite when f is a pole of sys.

See Also bode Bode frequency response
freqresp Frequency response over a set of frequencies
sigma Singular value response

A B C D, , ,()

H f() D C fI A–() 1– B+=

H z() z 1–

z2 z 1+ +
------------------------=

z 1 j+=

feedback

1-83

1feedbackPurpose Feedback connection of two LTI models

Syntax sys = feedback(sys1,sys2)
sys = feedback(sys1,sys2,sign)
sys = feedback(sys1,sys2,feedin,feedout,sign)

Description sys = feedback(sys1,sys2) returns an LTI model sys for the negative
feedback interconnection.

The closed-loop model sys has as input vector and as output vector. The
LTI models sys1 and sys2 must be both continuous or both discrete with
identical sample times. Precedence rules are used to determine the resulting
model type (see Precedence Rules).

To apply positive feedback, use the syntax

sys = feedback(sys1,sys2,+1)

By default, feedback(sys1,sys2) assumes negative feedback and is
equivalent to feedback(sys1,sys2,-1).

Finally,

sys = feedback(sys1,sys2,feedin,feedout)

sys1

sys2

-

+
u y

u y

feedback

1-84

computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys1 and specifies
which inputs are involved in the feedback loop. Similarly, feedout specifies
which outputs of sys1 are used for feedback. The resulting LTI model sys has
the same inputs and outputs as sys1 (with their order preserved). As before,
negative feedback is applied by default and you must use

sys = feedback(sys1,sys2,feedin,feedout,+1)

to apply positive feedback.

For more complicated feedback structures, use append and connect.

Remark You can specify static gains as regular matrices, for example,

sys = feedback(sys1,2)

However, at least one of the two arguments sys1 and sys2 should be an LTI
object. For feedback loops involving two static gains k1 and k2, use the syntax

sys = feedback(tf(k1),k2)

sys1

sys2

-

+
u y

v z

sys

u
y

feedback

1-85

Examples Example 1

To connect the plant

with the controller

using negative feedback, type

G = tf([2 5 1],[1 2 3],'inputname','torque',...
'outputname','velocity');

H = zpk(-2,-10,5)
Cloop = feedback(G,H)

and MATLAB returns

Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)

 (s+3.419) (s^2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules.
Note that Cloop inherited the input and output names from G.

-

+
G

H

velocitytorque

G s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

H s() 5 s 2+()
s 10+

--------------------=

feedback

1-86

Example 2
Consider a state-space plant P with five inputs and four outputs and a
state-space feedback controller K with three inputs and two outputs. To connect
outputs 1, 3, and 4 of the plant to the controller inputs, and the controller
outputs to inputs 4 and 2 of the plant, use

feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)

Example 3
You can form the following negative-feedback loops

by

Cloop = feedback(G,1) % left diagram
Cloop = feedback(1,G) % right diagram

Limitations The feedback connection should be free of algebraic loop. If and are the
feedthrough matrices of sys1 and sys2, this condition is equivalent to:

• nonsingular when using negative feedback

• nonsingular when using positive feedback.

See Also series Series connection
parallel Parallel connection
connect Derive state-space model for block diagram

interconnection

G

G

D1 D2

I D1D2+

I D1D2–

filt

1-87

1filtPurpose Specify discrete transfer functions in DSP format

Syntax sys = filt(num,den)
sys = filt(num,den,Ts)
sys = filt(M)

sys = filt(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = filt(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description In digital signal processing (DSP), it is customary to write transfer functions
as rational expressions in and to order the numerator and denominator
terms in ascending powers of , for example,

The function filt is provided to facilitate the specification of transfer functions
in DSP format.

sys = filt(num,den) creates a discrete-time transfer function sys with
numerator(s) num and denominator(s) den. The sample time is left unspecified
(sys.Ts = -1) and the output sys is a TF object.

sys = filt(num,den,Ts) further specifies the sample time Ts (in seconds).

sys = filt(M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value
pairs of the form

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See LTI Properties and the set
entry for additional information on LTI properties and admissible property
values.

Arguments For SISO transfer functions, num and den are row vectors containing the
numerator and denominator coefficients ordered in ascending powers of .
For example, den = [1 0.4 2] represents the polynomial .

z 1–

z 1–

H z 1–() 2 z 1–
+

1 0.4z 1– 2z 2–
+ +

---=

z 1–

1 0.4z 1– 2z 2–
+ +

filt

1-88

MIMO transfer functions are regarded as arrays of SISO transfer functions
(one per I/O channel), each of which is characterized by its numerator and
denominator. The input arguments num and den are then cell arrays of row
vectors such that:

• num and den have as many rows as outputs and as many columns as inputs.

• Their entries num{i,j} and den{i,j} specify the numerator and
denominator of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row
vector representation of this common denominator. See also MIMO Transfer
Function Models for alternative ways to specify MIMO transfer functions.

Remark filt behaves as tf with the Variable property set to 'z^-1' or 'q'. See tf
entry below for details.

Example Typing the commands

num = {1 , [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den,'inputname',{'channel1' 'channel2'})

creates the two-input digital filter

with unspecified sample time and input names 'channel1' and 'channel2'.

See Also tf Create transfer functions
zpk Create zero-pole-gain models
ss Create state-space models

i j,()

H z 1–() 1

1 z 1– 2z 2–
+ +

------------------------------------ 1 0.3z 1–
+

5 2z 1–
+

--------------------------=

frd

1-89

1frdPurpose Create a frequency response data (FRD) object or convert another model type
to an FRD model

Syntax sys = frd(response,frequency)
sys = frd(response,frequency,Ts)
sys = frd
sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency)
sysfrd = frd(sys,frequency,'Units',units)

Description sys = frd(response,frequency) creates an FRD model sys from the
frequency response data stored in the multidimensional array response. The
vector frequency represents the underlying frequencies for the frequency
response data. See Table 1-1, Data Format for the Argument response in FRD
Models.

sys = frd(response,frequency,Ts) creates a discrete-time FRD model sys
with scalar sample time Ts. Set Ts = -1 to create a discrete-time FRD model
without specifying the sample time.

sys = frd creates an empty FRD model.

The input argument list for any of these syntaxes can be followed by property
name/property value pairs of the form

'PropertyName',PropertyValue

You can use these extra arguments to set the various properties of FRD models
(see the set command, or LTI Properties and Model-Specific Properties). These
properties include 'Units'. The default units for FRD models are in 'rad/s'.

To force an FRD model sys to inherit all of its generic LTI properties from any
existing LTI model refsys, use the syntax

sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency) converts a TF, SS, or ZPK model to an FRD
model. The frequency response is computed at the frequencies provided by the
vector frequency.

frd

1-90

sysfrd = frd(sys,frequency,'Units',units)converts an FRD model from a
TF, SS, or ZPK model while specifying the units for frequency to be units
('rad/s' or 'Hz').

Arguments When you specify a SISO or MIMO FRD model, or an array of FRD models, the
input argument frequency is always a vector of length Nf, where Nf is the
number of frequency data points in the FRD. The specification of the input
argument response is summarized in the following table.

Remarks See Frequency Response Data (FRD) Models for more information on single
FRD models, and Creating LTI Models for information on building arrays of
FRD models.

Example Type the commands

freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)

to create a SISO FRD model.

See Also chgunits Change units for an FRD model
frdata Quick access to data for an FRD model
set Set the properties for an LTI model
ss Create state-space models

Table 1-1: Data Format for the Argument response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the
frequency response at the frequency frequency(i)

MIMO model
with Ny outputs
and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which
response(i,j,k) specifies the frequency response
from input j to output i at frequency frequency(k)

S1-by-...-by-Sn
array of models
with Ny outputs
and Nu inputs

Multidimensional array of size [Ny Nu S1 ... Sn] for
which response(i,j,k,:) specifies the array of
frequency response data from input j to output i at
frequency frequency(k)

frd

1-91

tf Create transfer functions
zpk Create zero-pole-gain models

frdata

1-92

1frdataPurpose Quick access to data for a frequency response data object

Syntax [response,freq] = frdata(sys)
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys,'v')

Description [response,freq] = frdata(sys) returns the response data and frequency
samples of the FRD model sys. For an FRD model with Ny outputs and Nu
inputs at Nf frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j)
entry specifies the response from input j to output i.

• freq is a column vector of length Nf that contains the frequency samples of
the FRD model.

See Table 11-14, “Data Format for the Argument response in FRD Models,” on
page 80 for more information on the data format for FRD response data.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data and frequencies directly as column
vectors rather than as cell arrays (see example below).

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of sys can be accessed with get or by direct structure-like
referencing (e.g., sys.Units).

Arguments The input argument sys to frdata must be an FRD model.

Example Typing the commands

freq = logspace(1,2,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq);
[resp,freq] = frdata(sys,'v')

returns the FRD model data

resp =
0.2040 + 0.4565i

frdata

1-93

 2.4359 - 4.3665i

freq =
 10
 100

See Also frd Create or convert to FRD models
get Get the properties for an LTI model
set Set model properties

freqresp

1-94

1freqrespPurpose Compute frequency response over grid of frequencies

Syntax H = freqresp(sys,w)

Description H = freqresp(sys,w) computes the frequency response of the LTI model sys
at the real frequency points specified by the vector w. The frequencies must be
in radians/sec. For single LTI Models, freqresp(sys,w) returns a 3-D array H
with the frequency as the last dimension (see “Arguments” below). For LTI
arrays of size [Ny Nu S1 ... Sn], freqresp(sys,w) returns a
[Ny-by-Nu-by-S1-by-...-by-Sn] length (w) array.

In continuous time, the response at a frequency ω is the transfer function value
at . For state-space models, this value is given by

In discrete time, the real frequencies w(1),..., w(N) are mapped to points on the
unit circle using the transformation

where is the sample time. The transfer function is then evaluated at the
resulting values. The default is used for models with unspecified
sample time.

Remark If sys is an FRD model, freqresp(sys,w), w can only include frequencies in
sys.frequency. Interpolation and extrapolation are not supported. To
interpolate an FRD model, use interp.

Arguments The output argument H is a 3-D array with dimensions

For SISO systems, H(1,1,k) gives the scalar response at the frequency w(k).
For MIMO systems, the frequency response at w(k) is H(:,:,k), a matrix with
as many rows as outputs and as many columns as inputs.

Example Compute the frequency response of

s jω=

H jω() D C jωI A–() 1– B+=

z e
jωTs=

Ts
z Ts 1=

number of outputs() number of inputs()× length of w()×

freqresp

1-95

at the frequencies . Type

w = [1 10 100]
H = freqresp(P,w)

H(:,:,1) =

 0 0.5000- 0.5000i
 -0.2000+ 0.6000i 1.0000

H(:,:,2) =

 0 0.0099- 0.0990i
 0.9423+ 0.2885i 1.0000

H(:,:,3) =

 0 0.0001- 0.0100i
 0.9994+ 0.0300i 1.0000

The three displayed matrices are the values of for

The third index in the 3-D array H is relative to the frequency vector w, so you
can extract the frequency response at rad/sec by

H(:,:,w==10)

ans =
 0 0.0099- 0.0990i
 0.9423+ 0.2885i 1.0000

P s()
0 1

s 1+

s 1–
s 2+
------------ 1

=

ω 1 10 100, ,=

P jω()

ω 1,= ω 10,= ω 100=

ω 10=

freqresp

1-96

Algorithm For transfer functions or zero-pole-gain models, freqresp evaluates the
numerator(s) and denominator(s) at the specified frequency points. For
continuous-time state-space models , the frequency response is

For efficiency, is reduced to upper Hessenberg form and the linear
equation is solved at each frequency point, taking advantage
of the Hessenberg structure. The reduction to Hessenberg form provides a good
compromise between efficiency and reliability. See [1] for more details on this
technique.

Diagnostics If the system has a pole on the axis (or unit circle in the discrete-time case)
and w happens to contain this frequency point, the gain is infinite, is
singular, and freqresp produces the following warning message.

Singularity in freq. response due to jw-axis or unit circle pole.

References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also evalfr Response at single complex frequency
bode Bode plot
nyquist Nyquist plot
nichols Nichols plot
sigma Singular value plot
ltiview LTI system viewer
interp Interpolate FRD model between frequency points

A B C D, , ,()

D C jω A–() 1– B ,+ ω ω1 ... ωN, ,=

A
jω A–()X B=

jω
jωI A–

gcare

1-97

1gcarePurpose Generalized solver for continuous-time algebraic Riccati equations

Syntax [X,L,report] = gcare(H,J,ns)
[X1,X2,D,L] = gcare(H,...,'factor')

Description [X,L,report] = gcare(H,J,ns) computes the unique stabilizing solution X of
the continuous-time algebraic Riccati equation associated with a Hamiltonian
pencil of the form

The optional input ns is the row size of the A matrix. Default values for J and
ns correspond to E=I and R=[].

Optionally, gcare returns the vector L of closed-loop eigenvalues and a
diagnosis report with value:

• −1 if the Hamiltonian pencil has jw-axis eigenvalues

• −2 if there is no finite stabilizing solution X

• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gcare(H,...,'factor') returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains
the closed-loop eigenvalues. All outputs are empty when the associated
Hamiltonian matrix has eigenvalues on the imaginary axis.

 See Also care Solver for continuous-time algebraic Riccati equations
gdare Generalized solver for discrete-time algebraic Riccati

equations

H tJ–
A F S1
G A'– S2–

S2' S1' R

E 0 0
0 E' 0
0 0 0

–=

gdare

1-98

1gdarePurpose Generalized solver for discrete-time algebraic Riccati equations.

Syntax [X,L,report] = gdare(H,J,ns)
[X1,X2,D,L] = gdare(H,J,NS,'factor')

Description [X,L,report] = gdare(H,J,ns) computes the unique stabilizing solution X of
the discrete-time algebraic Riccati equation associated with a Symplectic
pencil of the form

The third input ns is the row size of the A matrix.

Optionally, gdare returns the vector L of closed-loop eigenvalues and a
diagnosis report with value:

• −1 if the Symplectic pencil has eigenvalues on the unit circle

• −2 if there is no finite stabilizing solution X

• 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.

[X1,X2,D,L] = gdare(H,J,NS,'factor') returns two matrices X1, X2 and a
diagonal scaling matrix D such that X = D*(X2/X1)*D. The vector L contains
the closed-loop eigenvalues. All outputs are empty when the Symplectic pencil
has eigenvalues on the unit circle.

See Also dare Solver for discrete-time algebraic Riccati equations
gcare Generalized solver for continuous-time algebraic

Riccati equations

H tJ–
A F B
Q– E' S–

S' 0 R

E 0 0
0 A' 0
0 B'– 0

–=

gensig

1-99

1gensigPurpose Generate test input signals for lsim

Syntax [u,t] = gensig(type,tau)
[u,t] = gensig(type,tau,Tf,Ts)

Description [u,t] = gensig(type,tau) generates a scalar signal u of class type and with
period tau (in seconds). The following types of signals are available.

gensig returns a vector t of time samples and the vector u of signal values at
these samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the
signal and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to lsim and simulate the response of
a single-input linear system to the specified signal. Since t is uniquely
determined by Tf and Ts, you can also generate inputs for multi-input systems
by repeated calls to gensig.

Example Generate a square wave with period 5 seconds, duration 30 seconds, and
sampling every 0.1 second.

[u,t] = gensig('square',5,30,0.1)

Plot the resulting signal.

plot(t,u)

'sin' Sine wave.

'square' Square wave.

'pulse' Periodic pulse.

gensig

1-100

axis([0 30 -1 2])

See Also lsim Simulate response to arbitrary inputs

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

get

1-101

1getPurpose Access/query LTI property values

Syntax Value = get(sys,'PropertyName')
get(sys)
Struct = get(sys)

Description Value = get(sys,'PropertyName') returns the current value of the property
PropertyName of the LTI model sys. The string 'PropertyName' can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). You can specify any generic LTI property,
or any property specific to the model sys (see “LTI Properties” for details on
generic and model-specific LTI properties).

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard
MATLAB structure with the property names as field names and the property
values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Example Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

You can display all LTI properties of h with

get(h)
num = {[0 1]}
den = {[1 2]}

 Variable = 'z'
 Ts = 0.1
 InputDelay = 0
 OutputDelay = 0
 ioDelay = 0
 InputName = {'voltage'}
 OutputName = {''}
 InputGroup = {0x2 cell}
 OutputGroup = {0x2 cell}

get

1-102

 Notes = {}
 UserData = 'hello'

or query only about the numerator and sample time values by

get(h,'num')

ans =
 [1x2 double]

and

get(h,'ts')

ans =
 0.1000

Because the numerator data (num property) is always stored as a cell array, the
first command evaluates to a cell array containing the row vector [0 1].

Remark An alternative to the syntax

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

For example,

sys.Ts
sys.a
sys.user

return the values of the sample time, matrix, and UserData property of the
(state-space) model sys.

See Also frdata Quick access to frequency response data
set Set/modify LTI properties
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A

getoptions

1-103

1getoptionsPurpose Return @PlotOptions handles or plot options property

Syntax p = getoptions(h)
p = getoptions(h,propertyname)

Description p = getoptions(h) returns the plot options handle associated with plot handle
h. p contains all the settable options for a given response plot.

p = getoptions(h,propertyname) returns the specified options property,
propertyname, for the plot with handle h. You can use this to interrogate a plot
handle. For example,

p = getoptions(h,'Grid')

returns 'on' if a grid is visible, and 'off' when it is not.

See Also setoptions Set plot options for response plots

gram

1-104

1gramPurpose Compute controllability and observability grammians

Syntax Wc = gram(sys,'c')
Wo = gram(sys,'o')

Description gram calculates controllability and observability grammians. You can use
grammians to study the controllability and observability properties of
state-space models and for model reduction [1,2]. They have better numerical
properties than the controllability and observability matrices formed by ctrb
and obsv.

Given the continuous-time state-space model

the controllability grammian is defined by

and the observability grammian by

The discrete-time counterparts are

The controllability grammian is positive definite if and only if is
controllable. Similarly, the observability grammian is positive definite if and
only if is observable.

Use the commands

Wc = gram(sys,'c') % controllability grammian
Wo = gram(sys,'o') % observability grammian

x· Ax Bu+=

y Cx Du+=

Wc eAτBBTeATτ τd
0

∞

∫=

Wo eATτCTCeAτ τd
0

∞

∫=

Wc AkBBT AT()
k
 ,

k 0=

∞

∑= Wo AT()
k
CTCAk

k 0=

∞

∑=

A B,()

C A,()

gram

1-105

to compute the grammians of a continuous or discrete system. The LTI model
sys must be in state-space form.

Algorithm The controllability grammian is obtained by solving the continuous-time
Lyapunov equation

or its discrete-time counterpart

Similarly, the observability grammian solves the Lyapunov equation

in continuous time, and the Lyapunov equation

in discrete time.

Limitations The matrix must be stable (all eigenvalues have negative real part in
continuous time, and magnitude strictly less than one in discrete time).

References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980.

See Also balreal Grammian-based balancing of state-space realizations
ctrb Controllability matrix
lyap, dlyap Lyapunov equation solvers
obsv Observability matrix

Wc

AWc WcAT BBT
+ + 0=

AWcAT Wc– BBT
+ 0=

Wo

ATWo WoA CTC+ + 0=

ATWoA Wo– CTC+ 0=

A

hasdelay

1-106

1hasdelayPurpose Test if an LTI model has time delays

Syntax hasdelay(sys)

Description hasdelay(sys) returns 1 (true) if the LTI model sys has input delays, output
delays, or I/O delays, and 0 (false) otherwise.

See Also delay2z Changes transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

totaldelay Combines delays for an LTI model

hsvd

1-107

1hsvdPurpose Computes the Hankel singular values of an LTI model

Syntax hsv = hsvd(sys)
hsvd(sys)
[hsv,baldata] = hsvd(sys)

Description hsv = hsvd(sys) computes the Hankel singular values hsv of the LTI model
sys. In state coordinates that equalize the input-to-state and state-to-output
energy transfers, the Hankel singular values measure the contribution of each
state to the input/output behavior. Hankel singular values are to model order
what singular values are to matrix rank. In particular, small Hankel singular
values signal states that can be discarded to simplify the model (see balred).

For models with unstable poles, hsvd only computes the Hankel singular
values of the stable part and entries of hsv corresponding to unstable modes
are set to Inf. Use

hsv = hsvd(sys,'AbsTol',ATOL,...
'RelTol',RTOL,'Offset',ALPHA)

to specify additional options for the stable/unstable decomposition, see STABSEP
for details. The default values are ATOL=0, RTOL=1e-8, and ALPHA=1e-8.

hsvd(sys) displays a plot of the Hankel singular values.

[hsv,baldata] = hsvd(sys) returns additional data to speed up model order
reduction with balred. For example

sys = rss(20); % 20-th order model
[hsv,baldata] = hsvd(sys);
rsys = balred(sys,8:10,'Balancing',baldata);
bode(sys,'b',rsys,'r--')

computes 3 approximations of sys of orders 8, 9, 10.

There is more than one hsvd available. Type

help lti/hsvd

for more information.

Algorithm The AbsTol, RelTol, and ALPHA parameters are only used for models with
unstable or marginally stable dynamics. Because Hankel singular values are

hsvd

1-108

only meaningful for stable dynamics, hsvd must first splitsuch models into the
sum of their stable and unstable parts:

 G = G_s + G_ns

This decomposition can be tricky when the model has modes close to the
stability boundary (e.g., a pole at s=-1e-10), or clusters of modes on the
stability boundary (e.g., double or triple integrators).While hsvd is able to
overcome these difficulties in most cases, it sometimes produces unexpected
results such as

1 Large Hankel singular values for the stable part.

This happens when the stable part G_s contains some poles very close to the
stability boundary. To force such modes into the unstable group, increase
the 'Offset' option to slightly grow the unstable region.

2 Too many modes are labeled "unstable." For example, you see 5 red bars in
the HSV plot when your model had only 2 unstable poles.

The stable/unstable decomposition algorithm has built-in accuracy checks
that reject decompositions causing a significant loss of accuracy in the
frequency response. Such loss of accuracy arises, e.g., when trying to split a
cluster of stable and unstable modes near s=0. Because such clusters are
numerically equivalent to a multiple pole at s=0, it is actually desirable to
treat the whole cluster as unstable. In some cases, however, large relative
errors in low-gain frequency bands can trip the accuracy checks and lead to
a rejection of valid decompositions. Additional modes are then absorbed into
the unstable part G_ns, unduly increasing its order.

Such issues can be easily corrected by adjusting the AbsTol and RelTol
tolerances. By setting AbsTol to a fraction of smallest gain of interest in
your model, you tell the algorithm to ignore errors below a certain gain
threshold. By increasing RelTol, you tell the algorithm to sacrifice some
relative model accuracy in exchange for keeping more modes in the stable
part G_s.

Examples These examples illustrate the use of AbsTol and offset.

Example 1: Large Hankel singular values for the stable part.
First, create a system with a stable pole very near to 0, then calculate the
Hankel singular values.

hsvd

1-109

sys = zpk([1 2],[-1 -2 -3 -10 -1e-7],1)
hsvd(sys)

Zero/pole/gain:
 (s-1) (s-2)

(s+1) (s+2) (s+3) (s+10) (s+1e-007)

Notice the dominant Hankel singular value with 1e5 magnitude, due to the
mode s=-1e-7 near the imaginary axis. Set the offset=1e-6 to treat this mode
as unstable

hsvd(sys,'Offset',1e-7)

Zero/pole/gain:

 (s-1) (s-2)

(s+1) (s+2) (s+3) (s+10) (s+1e-007)

hsvd

1-110

The dominant Hankel singular value is now shown as unstable.

Example 2: Too many modes are labeled as unstable.
Create a system with three unstable modes. Then calculate the Hankel
singular values.

sys = zpk([1 -1],[-1e-2,1e3,-1,-1,1,-2,0,10*i-1,-10*i-1],1);
esort(pole(sys))

ans =

1.0000e+003
1.0000e+000

0
-1.0000e-002
-1.0000e+000
-1.0000e+000
-1.0000e+000 +1.0000e+001i

hsvd

1-111

-1.0000e+000 -1.0000e+001i
-2.0000e+000

There are 3 unstable modes, but there are 7 “unstable” Hankel singular values
on the plot.

hsvd(sys)

Note the low gain of -400 dB near to pole s=1e3 (w=1e3 rad/s). Try increasing
the absolute tolerance to AbsTol = 1e-16 (= -320 dB).

hsvd(sys,'AbsTol',1e-16)

hsvd

1-112

This fixed the problem, as this figure shows.

There are now only three unstable modes, the corrrect number for the system
sys.

See Also balred Model order reduction
balreal Gramian-based balancing of state-space realizations

hsvplot

1-113

1hsvplotPurpose Plot the Hankel singular values and return the plot handle

Syntax h = hsvplot(sys);

h = hsvplot(sys, 'AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA)
h = hsvplot(AX,sys,...)

Description h = hsvplot(sys) plots the Hankel singular values of an LTI system sys and
returns the plot handle h. You can use this handle to customize the plot with
the getoptions and setoptions commands. Type

help hsvoptions

for a list of available plot options.

hsvplot(sys) plots the Hankel singular values of the LTI model sys. See hsvd
for details on the meaning and purpose of Hankel singular values. The Hankel
singular values for the stable and unstable modes of sys are shown in blue and
red, respectively.

hsvplot(sys, AbsTol',ATOL,'RelTol',RTOL,'Offset',ALPHA) specifies
additional options for computing the Hankel singular values.

hsvplot(AX,sys,...) attaches the plot to the axes with handle AX.

Example Use the plot handle to change plot options in the Hankel singular values plot.

sys = rss(20);
h = hsvplot(sys,'AbsTol',1e-6);
% Switch to log scale and modify Offset parameter
setoptions(h,'Yscale','log','Offset',0.3)

See Also getoptions Get plot options
hsvd Plot Hankel singular values (does not return the

handle)
setoptions Set plot options

impulse

1-114

1impulsePurpose Compute the impulse response of LTI models

Syntax impulse(sys)
impulse(sys,t)

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,t)
impulse(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = impulse(sys)

Description impulse calculates the unit impulse response of a linear system. The impulse
response is the response to a Dirac input for continuous-time systems and
to a unit pulse at for discrete-time systems. Zero initial state is assumed
in the state-space case. When invoked without left-hand arguments, this
function plots the impulse response on the screen.

impulse(sys) plots the impulse response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. The impulse response
of multi-input systems is the collection of impulse responses for each input
channel. The duration of simulation is determined automatically to display the
transient behavior of the response.

impulse(sys,t) sets the simulation horizon explicitly. You can specify either
a final time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the impulse responses of several LTI models sys1,..., sysN on a single
figure, use

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,t)

δ t()
t 0=

impulse

1-115

As with bode or plot, you can specify a particular color, linestyle, and/or
marker for each system, for example,

impulse(sys1,'y:',sys2,'g--')

See “Plotting and Comparing Multiple Systems” and the bode entry in this
section for more details.

When invoked with left-side arguments,

[y,t] = impulse(sys)
[y,t,x] = impulse(sys) % for state-space models only
y = impulse(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the impulse
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

and y(:,:,j) gives the response to an impulse disturbance entering the jth
input channel. Similarly, the dimensions of x are

Example To plot the impulse response of the second-order state-space model

use the following commands.

a = [-0.5572 -0.7814;0.7814 0];
b = [1 -1;0 2];
c = [1.9691 6.4493];

length of t() number of outputs() number of inputs()××

length of t() number of states() number of inputs()××

x·1

x·2

0.5572 – 0.7814–

0.7814 0

x1

x2

1 1–

0 2

u1

u2

+=

y 1.9691 6.4493
x1

x2

=

impulse

1-116

sys = ss(a,b,c,0);
impulse(sys)

The left plot shows the impulse response of the first input channel, and the
right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by

[y,t] = impulse(sys)

Because this system has two inputs, y is a 3-D array with dimensions

size(y)

ans =
 101 1 2

(the first dimension is the length of t). The impulse response of the first input
channel is then accessed by

y(:,:,1)

impulse

1-117

Algorithm Continuous-time models are first converted to state space. The impulse
response of a single-input state-space model

is equivalent to the following unforced response with initial state .

To simulate this response, the system is discretized using zero-order hold on
the inputs. The sampling period is chosen automatically based on the system
dynamics, except when a time vector t = 0:dt:Tf is supplied (dt is then used
as sampling period).

Limitations The impulse response of a continuous system with nonzero matrix is infinite
at . impulse ignores this discontinuity and returns the lower continuity
value at .

See Also ltiview LTI system viewer
step Step response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs

x· Ax bu+=

y Cx=

b

x· Ax ,= x 0() b=

y Cx=

D
t 0=

Cb t 0=

impulseplot

1-118

1impulseplotPurpose Compute the impulse response and return the plot handle

Syntax h = impulseplot(sys)

h = impulseplot(sys,Tfinal)
h = impulseplot(sys,t)
h = impulseplot(sys1,sys2,...,t)
h = impulseplot(AX,...)
h = impulseplot(..., plotoptions)

Description h = impulseplot(sys) plots the impulse response of the LTI model sys
(created with either tf, zpk, or ss). For multiinput models, independent
impulse commands are applied to each input channel. The time range and
number of points are chosen automatically. For continuous systems with direct
feedthrough, the infinite pulse at t=0 is disregarded. impulseplot also returns
the plot handle, h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

impulseplot(sys) plots the impulse response of the LTI model without
returning the plot handle.

impulseplot(sys,Tfinal) simulates the impulse response from t=0 to the
final time t=Tfinal. For discrete-time systems with unspecified sampling
time, Tfinal is interpreted as the number of samples.

impulseplot(sys,t) uses the user-supplied time vector t for simulation. For
discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample
time. For continuous-time models, t should be of the form Ti:dt:Tf, where dt
becomes the sample time of a discrete approximation to the continuous system.
The impulse is always assumed to arise at t=0 (regardless of Ti).

impulseplot(sys1,sys2,...,t) plots the impulse response of multiple LTI
models sys1,sys2,... on a single plot. The time vector t is optional. You can also
specify a color, line style, and marker for each system, as in

impulseplot(sys1,'r',sys2,'y--',sys3,'gx')

impulseplot

1-119

impulseplot(AX,...) plots into the axes with handle AX.

impulseplot(..., plotoptions) plots the impulse response with the options
specified in plotoptions. Type

help timeoptions

for more detail.

Example Normalize the impulse response of a third-order system.

sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');

See Also getoptions Get plot options
impulse Plot impulse responses
setoptions Set plot options

initial

1-120

1initialPurpose Compute the initial condition response of state-space models

Syntax initial(sys,x0)
initial(sys,x0,t)

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)
initial(sys1,'PlotStyle1',...,sysN,'PlotStyleN',x0)

[y,t,x] = initial(sys,x0)

Description initial calculates the unforced response of a state-space model with an initial
condition on the states.

This function is applicable to either continuous- or discrete-time models. When
invoked without left-side arguments, initial plots the initial condition
response on the screen.

initial(sys,x0) plots the response of sys to an initial condition x0 on the
states. sys can be any state-space model (continuous or discrete, SISO or
MIMO, with or without inputs). The duration of simulation is determined
automatically to reflect adequately the response transients.

initial(sys,x0,t) explicitly sets the simulation horizon. You can specify
either a final time t = Tfinal (in seconds), or a vector of evenly spaced time
samples of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see impulse), so make sure to choose dt small enough to capture
transient phenomena.

To plot the initial condition responses of several LTI models on a single figure,
use

x· Ax ,= x 0() x0=

y Cx=

initial

1-121

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)

(see impulse for details).

When invoked with left-side arguments,

[y,t,x] = initial(sys,x0)
[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. The array y has as many
rows as time samples (length of t) and as many columns as outputs. Similarly,
x has length(t) rows and as many columns as states.

Example Plot the response of the state-space model

to the initial condition

a = [-0.5572 -0.7814;0.7814 0];
c = [1.9691 6.4493];
x0 = [1 ; 0]

sys = ss(a,[],c,[]);

x·1

x·2

0.5572 – 0.7814–

0.7814 0

x1

x2

=

y 1.9691 6.4493
x1

x2

=

x 0() 1
0

=

initial

1-122

initial(sys,x0)

See Also impulse Impulse response
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer
step Step response

initialplot

1-123

1initialplotPurpose Compute initial condition responses and return plot handles

Syntax h = initialplot(sys, x0)

h = initialplot(sys,x0,Tfinal)
h = initialplot(sys,x0,t)
h = initialplot(sys1,sys2,...,x0,t)
h = initialplot(AX,...)
h = initialplot(..., plotoptions)

Description initialplot(sys,x0) plots the undriven response of the state-space model
sys (created with ss) with initial condition x0 on the states. This response is
characterized by these equations:

 Continuous time: x = A x, y = C x, x(0) = x0

 Discrete time: x[k+1] = A x[k], y[k] = C x[k], x[0] = x0

The time range and number of points are chosen automatically. initialplot
also returns the plot handle h. You can use this handle to customize the plot
with the getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

initialplot(sys,x0,Tfinal) simulates the time response from t=0 to the
final time t=Tfinal. For discrete-time models with unspecified sample time,
Tfinal should be the number of samples.

initialplot(sys,x0,t) specifies a time vector t to be used for simulation. For
discrete systems, t should be of the form 0:Ts:Tf, where Ts is the sample
time. For continuous-time models, t should be of the form 0:dt:Tf, where dt
becomes the sample time of a discrete approximation of the continuous model.

initialplot(sys1,sys2,...,x0,t) plots the response of multiple LTI models
sys1,sys2,... on a single plot. The time vector t is optional. You can also specify
a color, line style, and marker for each system, as in

initialplot(sys1,'r',sys2,'y--',sys3,'gx',x0).

initialplot(AX,...) plots into the axes with handle AX.

initialplot

1-124

initialplot(..., plotoptions) plots the initial condition response with the
options specified in plotoptions. Type

help timeoptions

for more detail.

Example Plot a third-order system’s response to initial conditions and use the plot
handle to change the plot’s title.

sys = rss(3);
h = initialplot(sys,[1,1,1])
p = getoptions(h); % Get options for plot.
p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to the plot.

See Also getoptions Get plot options
initial Plot response to initial conditions
setoptions Set plot options

interp

1-125

1interpPurpose Interpolate an FRD model between frequency points

Syntax isys = interp(sys,freqs) interpolates the frequency response data
contained in the FRD model sys at the frequencies freqs. interp, which is an
overloaded version of the MATLAB function interp, uses linear interpolation
and returns an FRD model isys containing the interpolated data at the new
frequencies freqs.

You should express the frequency values freqs in the same units as
sys.frequency. The frequency values must lie between the smallest and
largest frequency points in sys (extrapolation is not supported).

See Also freqresp Frequency response of LTI models
ltimodels Help on LTI models

inv

1-126

1invPurpose Invert LTI systems

Syntax isys = inv(sys)

Description inv inverts the input/output relation

to produce the LTI system with the transfer matrix .

This operation is defined only for square systems (same number of inputs and
outputs) with an invertible feedthrough matrix . inv handles both
continuous- and discrete-time systems.

Example Consider

At the MATLAB prompt, type

H = [1 tf(1,[1 1]);0 1]
Hi = inv(H)

to invert it. MATLAB returns

Transfer function from input 1 to output...
 #1: 1

 #2: 0

Transfer function from input 2 to output...
 -1
 #1: -----
 s + 1

 #2: 1

You can verify that

y G s()u=

H s() G s() 1–
=

u H s()y=

D

H s() 1 1
s 1+

0 1

=

inv

1-127

H * Hi

is the identity transfer function (static gain I).

Limitations Do not use inv to model feedback connections such as

While it seems reasonable to evaluate the corresponding closed-loop transfer
function as

inv(1+g*h) * g

this typically leads to nonminimal closed-loop models. For example,

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

yields a third-order closed-loop model with an unstable pole-zero cancellation
at s = 1.

cloop

Zero/pole/gain:
 s (s-1)

(s-1) (s^2 + s + 1)

Use feedback to avoid such pitfalls.

cloop = feedback(g,h)

Zero/pole/gain:
 s

(s^2 + s + 1)

-

+
G

H

I GH+() 1– G

iopzmap

1-128

1iopzmapPurpose Plot pole-zero maps for I/O pairs of LTI models

Syntax iopzmap(sys)
iopzmap(sys1,sys2,...)

Description iopzmap(sys) computes and plots the poles and zeros of each input/output pair
of the LTI model sys. The poles are plotted as x’s and the zeros are plotted as
o’s.

iopzmap(sys1,sys2,...) shows the poles and zeros of multiple LTI models
sys1,sys2,... on a single plot. You can specify distinctive colors for each model,
as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping
ratio and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzmap plots the poles and zeros o each model
in the array on the same diagram.

Example Create a one-input, two-output system and plot pole-zero maps for I/O pairs.

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];

iopzmap

1-129

iopzmap(H)

See Also pzmap Pole-zero map
pole Compute system poles
zero Compute system zeros
sgrid Grid for s-plane plots
zgrid Grid for z-plane plots
ltimodels Information about LTI models

iopzplot

1-130

1iopzplotPurpose Plot pole-zero maps for I/O pairs and return the plot handle

Syntax h = iopzplot(sys)

h = iopzplot(sys1,sys2,...)
h = iopzplot(AX,...)
h = iopzplot(..., plotoptions)

Description h = iopzplot(sys) computes and plots the poles and zeros of each input/
output pair of the LTI model SYS. The poles are plotted as x's and the zeros are
plotted as o's. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.

iopzplot(sys1,sys2,...) shows the poles and zeros of multiple LTI models
SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model,
as in

iopzplot(sys1,'r',sys2,'y',sys3,'g')

iopzplot(AX,...) plots into the axes with handle AX.

iopzplot(..., plotoptions) plots the poles and zeros with the options
specified in plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio
and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzplot plots the poles and zeros of each model
in the array on the same diagram.

 Example Use the plot handle to change the I/O grouping of a pole/zero map.

sys = rss(3,2,2);
h = iopzplot(sys);
% View all input-output pairs on a single axis.

iopzplot

1-131

setoptions(h,'IOGrouping','all')

See Also getoptions Get plot options
iopzmap Plot a pole/zero map of I/O pairs
setoptions Set plot options

isct, isdt

1-132

1isct, isdtPurpose Determine whether an LTI model is continuous or discrete

Syntax boo = isct(sys)
boo = isdt(sys)

Description boo = isct(sys) returns 1 (true) if the LTI model sys is continuous and 0
(false) otherwise. sys is continuous if its sample time is zero, that is, sys.Ts=0.

boo = isdt(sys) returns 1 (true) if sys is discrete and 0 (false) otherwise.
Discrete-time LTI models have a nonzero sample time, except for empty models
and static gains, which are regarded as either continuous or discrete as long as
their sample time is not explicitly set to a nonzero value. Thus both

isct(tf(10))
isdt(tf(10))

are true. However, if you explicitly label a gain as discrete, for example, by
typing

g = tf(10,'ts',0.01)

isct(g) now returns false and only isdt(g) is true.

See Also isa Determine LTI model type
isempty True for empty LTI models
isproper True for proper LTI models

isempty

1-133

1isemptyPurpose Test if an LTI model is empty

Syntax boo = isempty(sys)

Description isempty(sys) returns 1 (true) if the LTI model sys has no input or no output,
and 0 (false) otherwise.

Example Both commands

isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[],[]))

return 1 (true) while

isempty(ss(1,2,3,4))

returns 0 (false).

See Also issiso True for SISO systems
size I/O dimensions and array dimensions of LTI models

isproper

1-134

1isproperPurpose Test if an LTI model is proper

Syntax boo = isproper(sys)

Description isproper(sys) returns 1 (true) if the LTI model sys is proper and 0 (false)
otherwise.

State-space models are always proper. SISO transfer functions or
zero-pole-gain models are proper if the degree of their numerator is less than
or equal to the degree of their denominator. MIMO transfer functions are
proper if all their SISO entries are proper.

Example The following commands

isproper(tf([1 0],1)) % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

return false and true, respectively.

issiso

1-135

1issisoPurpose Test if an LTI model is single-input/single-output (SISO)

Syntax boo = issiso(sys)

Description issiso(sys) returns 1 (true) if the LTI model sys is SISO and 0 (false)
otherwise.

See Also isempty True for empty LTI models
size I/O dimensions and array dimensions of LTI models

kalman

1-136

1kalmanPurpose Design continuous- or discrete-time Kalman estimator

Syntax [kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn) % discrete time only
[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)

Description kalman designs a Kalman state estimator given a state-space model of the
plant and the process and measurement noise covariance data. The Kalman
estimator is the optimal solution to the following continuous or discrete
estimation problems.

Continuous-Time Estimation

Given the continuous plant

with known inputs and process and measurement white noise
satisfying

construct a state estimate that minimizes the steady-state error
covariance

The optimal solution is the Kalman filter with equations

where the filter gain is determined by solving an algebraic Riccati equation.
This estimator uses the known inputs and the measurements to generate

x· Ax Bu Gw+ += (state equation)
yv Cx Du Hw v+ + += (measurement equation)

u w v,

E w() E v() 0 , E wwT() Q , = E vvT() R= , E wvT() N== =

x̂ t()

P E x x̂–{ } x x̂–{ }T()
t ∞→
lim=

x̂
·

Ax̂ Bu L yv Cx̂– Du–()+ +=

ŷ
x̂

C
I

x̂ D
0

u+=

L
u yv

kalman

1-137

the output and state estimates and . Note that estimates the true plant
output

Discrete-Time Estimation

Given the discrete plant

and the noise covariance data

the Kalman estimator has equations

y x y

y Cx Du Hw+ +=

w

u

v

+

yv

x̂

Plant
y

Kalman
filter

u
ŷ

(Measurement noise)

Kalman estimator

x n 1+[] Ax n[] Bu n[] Gw n[]++=

yv n[] Cx n[] Du n[] Hw n[] v n[]+ + +=

E w n[]w n[]T() Q , = E v n[]v n[]T() R= , E w n[]v n[]T() N=

x̂ n 1 n+[] Ax̂ n n 1–[] Bu n[] L yv n[] Cx̂ n n 1–[] Du n[]––()+ +=

ŷ n n[]
x̂ n n[]

C I MC–()
I MC–

 x̂ n n 1–[] I CM–()D CM
MD– M

u n[]
yv n[]

+=

kalman

1-138

and generates optimal “current” output and state estimates and
using all available measurements including . The gain matrices and

 are derived by solving a discrete Riccati equation. The innovation gain
is used to update the prediction using the new measurement .

Usage [kest,L,P] = kalman(sys,Qn,Rn,Nn) returns a state-space model kest of the
Kalman estimator given the plant model sys and the noise covariance data Qn,
Rn, Nn (matrices above). sys must be a state-space model with matrices

The resulting estimator kest has as inputs and (or their
discrete-time counterparts) as outputs. You can omit the last input argument
Nn when .

The function kalman handles both continuous and discrete problems and
produces a continuous estimator when sys is continuous, and a discrete
estimator otherwise. In continuous time, kalman also returns the Kalman gain
L and the steady-state error covariance matrix P. Note that P is the solution of
the associated Riccati equation. In discrete time, the syntax

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn)

returns the filter gain and innovations gain , as well as the steady-state
error covariances

Finally, use the syntaxes

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn,sensors,known)

y n n[] x n n[]
yv n[] L

M M
x̂ n n 1–[] yv n[]

x̂ n n[] x̂ n n 1–[] M yv n[] Cx̂ n n 1–[]– Du n[]–()+=

innovation

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Q R N, ,

A B G C D H, , ,

u yv;[] ŷ ; x̂[]

N 0=

L M

P E e n n 1–[]e n n 1–[]T() ,
n ∞→
lim= e n n 1–[] x n[] x n n 1–[]–=

Z E e n n[]e n n[]T() ,
n ∞→
lim= e n n[] x n[] x n n[]–=

kalman

1-139

for more general plants sys where the known inputs and stochastic inputs
 are mixed together, and not all outputs are measured. The index vectors

sensors and known then specify which outputs of sys are measured and
which inputs are known. All other inputs are assumed stochastic.

Example See “LQG Design for the x-Axis” and “Kalman Filtering” for examples that use
the kalman function.

Limitations The plant and noise data must satisfy:

• detectable

• and

• has no uncontrollable mode on the imaginary
axis (or unit circle in discrete time)

with the notation

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

See Also care Solve continuous-time Riccati equations
dare Solve discrete-time Riccati equations
estim Form estimator given estimator gain
kalmd Discrete Kalman estimator for continuous plant
lqgreg Assemble LQG regulator
lqr Design state-feedback LQ regulator

u
w

y
u

C A,()
R 0> Q NR

1–
N

T
– 0≥

A NR
1–
C– Q NR

1–
N

T
–,()

Q GQGT
=

R R HN NTHT HQHT
+ + +=

N G QHT N+()=

kalmd

1-140

1kalmdPurpose Design discrete Kalman estimator for continuous plant

Syntax [kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

Description kalmd designs a discrete-time Kalman estimator that has response
characteristics similar to a continuous-time estimator designed with kalman.
This command is useful to derive a discrete estimator for digital
implementation after a satisfactory continuous estimator has been designed.

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts) produces a discrete Kalman
estimator kest with sample time Ts for the continuous-time plant

with process noise and measurement noise satisfying

The estimator kest is derived as follows. The continuous plant sys is first
discretized using zero-order hold with sample time Ts (see c2d entry), and the
continuous noise covariance matrices and are replaced by their discrete
equivalents

The integral is computed using the matrix exponential formulas in [2]. A
discrete-time estimator is then designed for the discretized plant and noise. See
kalman for details on discrete-time Kalman estimation.

kalmd also returns the estimator gains L and M, and the discrete error
covariance matrices P and Z (see kalman for details).

Limitations The discretized problem data should satisfy the requirements for kalman.

x· Ax Bu Gw+ += (state equation)
yv Cx Du v+ += (measurement equation)

w v

E w() E v() 0 , E wwT() Qn , = E vvT() Rn= , E wvT() 0== =

Qn Rn

Qd eAτGQGTeATτ τd
0

Ts

∫=

Rd R Ts⁄=

kalmd

1-141

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.

See Also kalman Design Kalman estimator
lqgreg Assemble LQG regulator
lqrd Discrete LQ-optimal gain for continuous plant

lft

1-142

1lftPurpose Redheffer star product (linear fractional transformation) of two LTI models

Syntax sys = lft(sys1,sys2)
sys = lft(sys1,sys2,nu,ny)

Description lft forms the star product or linear fractional transformation (LFT) of two LTI
models or LTI arrays. Such interconnections are widely used in robust control
techniques.

sys = lft(sys1,sys2,nu,ny) forms the star product sys of the two LTI
models (or LTI arrays) sys1 and sys2. The star product amounts to the
following feedback connection for single LTI models (or for each model in an
LTI array).

This feedback loop connects the first nu outputs of sys2 to the last nu inputs of
sys1 (signals), and the last ny outputs of sys1 to the first ny inputs of sys2
(signals). The resulting system sys maps the input vector to the
output vector .

The abbreviated syntax

sys = lft(sys1,sys2)

sys1

sys2

sys

z1

z2w2

w1

u

uy

y

u
y w1 ; w2[]

z1 ; z2[]

lft

1-143

produces:

• The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than
sys1. This amounts to deleting and in the above diagram.

• The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than
sys2. This amounts to deleting and in the above diagram.

Algorithm The closed-loop model is derived by elementary state-space manipulations.

Limitations There should be no algebraic loop in the feedback connection.

See Also connect Derive state-space model for block diagram
interconnection

feedback Feedback connection

w2 z2

w1 z1

sys1

sys2

u
y u

y

z1

z2w2

w1

sys1

sys2

Lower LFT connection Upper LFT connection

lqgreg

1-144

1lqgregPurpose Form LQG regulator given state-feedback gain and Kalman estimator

Syntax rlqg = lqgreg(kest,k)
rlqg = lqgreg(kest,k,'current') % discrete-time only

rlqg = lqgreg(kest,k,controls)

Description lqgreg forms the LQG regulator by connecting the Kalman estimator designed
with kalman and the optimal state-feedback gain designed with lqr, dlqr, or
lqry. The LQG regulator minimizes some quadratic cost function that trades
off regulation performance and control effort. This regulator is dynamic and
relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands

where is the Kalman state estimate. The regulator state-space equations are

where is the vector of plant output measurements (see kalman for
background and notation). The diagram below shows this dynamic regulator in
relation to the plant.

u Kx̂–=

x̂

x̂
·

A LC– B LD–()K– x̂ Lyv+=

u Kx̂–=

yv

lqgreg

1-145

In discrete time, you can form the LQG regulator using either the prediction
 of based on measurements up to , or the current state

estimate based on all available measurements including . While
the regulator

is always well-defined, the current regulator

is causal only when is invertible (see kalman for the notation). In
addition, practical implementations of the current regulator should allow for
the processing time required to compute once the measurements
become available (this amounts to a time delay in the feedback loop).

Usage rlqg = lqgreg(kest,k) returns the LQG regulator rlqg (a state-space model)
given the Kalman estimator kest and the state-feedback gain matrix k. The
same function handles both continuous- and discrete-time cases. Use
consistent tools to design kest and k:

• Continuous regulator for continuous plant: use lqr or lqry and kalman.

• Discrete regulator for discrete plant: use dlqr or lqry and kalman.

u

y

+

+x̂
K–

LQG regulator

u

Plant

Measurement
noise

Kalman
filter

Process
noise

yv

x̂ n n 1–[] x n[] yv n 1–[]
x̂ n n[] yv n[]

u n[] Kx̂ n n 1–[]–=

u n[] Kx̂ n n[]–=

I KMD–

u n[] yv n[]

lqgreg

1-146

• Discrete regulator for continuous plant: use lqrd and kalmd.

In discrete time, lqgreg produces the regulator

by default (see “Description”). To form the “current” LQG regulator instead, use

the syntax

rlqg = lqgreg(kest,k,'current')

This syntax is meaningful only for discrete-time problems.

rlqg = lqgreg(kest,k,controls) handles estimators that have access to
additional known plant inputs . The index vector controls then specifies
which estimator inputs are the controls , and the resulting LQG regulator
rlqg has and as inputs (see figure below).

Note Always use positive feedback to connect the LQG regulator to the plant.

Example See the example LQG Regulation.

u n[] Kx̂ n n 1–[]–=

u n[] Kx̂ n n[]–=

ud
u

ud yv

x̂

u

yv

Kalman

estimator
ud K– u

LQG regulator

lqgreg

1-147

See Also kalman Kalman estimator design
kalmd Discrete Kalman estimator for continuous plant
lqr, dlqr State-feedback LQ regulator
lqrd Discrete LQ regulator for continuous plant
lqry LQ regulator with output weighting
reg Form regulator given state-feedback and estimator

gains

lqr

1-148

1lqrPurpose Design linear-quadratic (LQ) state-feedback regulator for state-space systems

Syntax [K,S,e] = lqr(SYS,Q,R)
[K,S,e] = lqr(SYS,Q,R,N)
[K,S,e] = lqr(A,B,Q,R,N)

Description [K,S,e] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K such that:

For a continuouse time system, the state-feedback law minimizes the
quadratic cost function

subject to the system dynamics .

In addition to the state-feedback gain K, lqr returns the solution S of the
associated Riccati equation

and the closed-loop eigenvalues e = eig(A-B*K). Note that is derived from
 by

For a discrete-time state-space model, u[n]=-Kx[n] minimizes

subject to x[n+1]=Ax[n]+Bu[n].

[K,S,e] = LQR(A,B,Q,R,N) is an equivalent syntax for continuous-time
models with dynamics dx/dt=Ax+Bu.

In all cases, the default value N=0 is assumed when N is omitted.

Limitations The problem data must satisfy:

• The pair is stabilizable.

• and .

u Kx–=

J u() xTQx uTRu 2xTNu+ +() td
0

∞

∫=

x· Ax Bu+=

ATS SA SB N+()R 1– BTS NT
+()– Q+ + 0=

K
S

K R 1– BTS NT
+()=

J x'Qx u'Ru 2x'Nu+ +{ }∑=

A B,()
R 0> Q NR 1– NT

– 0≥

lqr

1-149

• has no unobservable mode on the imaginary
axis.

See Also care Solve continuous Riccati equations
dlqr State-feedback LQ regulator for discrete plant
lqgreg Form LQG regulator
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting

Q NR 1– NT
– A BR 1– NT

–,()

lqrd

1-150

1lqrdPurpose Design discrete LQ regulator for continuous plant

Syntax [Kd,S,e] = lqrd(A,B,Q,R,Ts)
[Kd,S,e] = lqrd(A,B,Q,R,N,Ts)

Description lqrd designs a discrete full-state-feedback regulator that has response
characteristics similar to a continuous state-feedback regulator designed using
lqr. This command is useful to design a gain matrix for digital implementation
after a satisfactory continuous state-feedback gain has been designed.

[Kd,S,e] = lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law

that minimizes a discrete cost function equivalent to the continuous cost
function

The matrices A and B specify the continuous plant dynamics

and Ts specifies the sample time of the discrete regulator. Also returned are the
solution S of the discrete Riccati equation for the discretized problem and the
discrete closed-loop eigenvalues e = eig(Ad-Bd*Kd).

[Kd,S,e] = lqrd(A,B,Q,R,N,Ts) solves the more general problem with a
cross-coupling term in the cost function.

Algorithm The equivalent discrete gain matrix Kd is determined by discretizing the
continuous plant and weighting matrices using the sample time Ts and the
zero-order hold approximation.

With the notation

u n[] Kdx n[]–=

J xTQx uTRu+() td
0

∞

∫=

x· Ax Bu+=

J xTQx uTRu 2xTNu+ +() td
0

∞

∫=

lqrd

1-151

the discretized plant has equations

and the weighting matrices for the equivalent discrete cost function are

The integrals are computed using matrix exponential formulas due to Van
Loan (see [2]). The plant is discretized using c2d and the gain matrix is
computed from the discretized data using dlqr.

Limitations The discretized problem data should meet the requirements for dlqr.

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1980, pp. 439–440

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.

See Also c2d Discretization of LTI model
dlqr State-feedback LQ regulator for discrete plant
kalmd Discrete Kalman estimator for continuous plant
lqr State-feedback LQ regulator for continuous plant

Φ τ() eAτ ,= Ad Φ Ts()=

Γ τ() eAηB η ,d
0

τ

∫= Bd Γ Ts()=

x n 1+[] Adx n[] Bdu n[]+=

Qd Nd

Nd
T Rd

ΦT τ() 0

ΓT τ() I

Q N

NT R

Φ τ() Γ τ()
0 I

τd
0

Ts

∫=

lqry

1-152

1lqryPurpose Linear-quadratic (LQ) state-feedback regulator with output weighting

Syntax [K,S,e] = lqry(sys,Q,R)
[K,S,e] = lqry(sys,Q,R,N)

Description Given the plant

or its discrete-time counterpart, lqry designs a state-feedback control

that minimizes the quadratic cost function with output weighting

(or its discrete-time counterpart). The function lqry is equivalent to lqr or
dlqr with weighting matrices:

[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati
solution S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space
model sys specifies the continuous- or discrete-time plant data .
The default value N=0 is assumed when N is omitted.

Example See LQG Design for the x-Axis for an example.

Limitations The data must satisfy the requirements for lqr or dlqr.

See Also lqr State-feedback LQ regulator for continuous plant
dlqr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design
lqgreg Form LQG regulator

x· Ax Bu+=

y Cx Du+=

u Kx–=

J u() yTQy uTRu 2yTNu+ +() td
0

∞

∫=

Q N

N
T

R

CT 0

DT I

Q N

NT R

C D
0 I

=

A B C D, , ,()

A B Q R N, , , ,

lsim

1-153

1lsimPurpose Simulate LTI model response to arbitrary inputs

Syntax lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')

lsim(sys1,sys2,...,sysN,u,t)
lsim(sys1,sys2,...,sysN,u,t,x0)
lsim(sys1,'PlotStyle1',...,sysN,'PlotStyleN',u,t)

[y,t,x] = lsim(sys,u,t,x0)

lsim(sys)

Description lsim simulates the (time) response of continuous or discrete linear systems to
arbitrary inputs. When invoked without left-hand arguments, lsim plots the
response on the screen.

lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the
input time history t,u. The vector t specifies the time samples for the
simulation and consists of regularly spaced time samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as
many columns as system inputs. Each row u(i,:) specifies the input value(s)
at the time sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete
time, u must be sampled at the same rate as the system (t is then redundant
and can be omitted or set to the empty matrix). In continuous time, the time
sampling dt=t(2)-t(1) is used to discretize the continuous model. If dt is too
large (undersampling), lsim issues a warning suggesting that you use a more
appropriate sample time, but will use the specified sample time. See Algorithm
on page 155 for a discussion of sample times.

lsim(sys,u,t,x0) further specifies an initial condition x0 for the system
states. This syntax applies only to state-space models.

lsim

1-154

lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0,'foh') explicitly specifies how
the input values should be interpolated between samples (zero-order hold or
linear interpolation). By default, lsim selects the interpolation method
automatically based on the smoothness of the signal U.

Finally,

lsim(sys1,sys2,...,sysN,u,t)

simulates the responses of several LTI models to the same input history t,u and
plots these responses on a single figure. As with bode or plot, you can specify
a particular color, linestyle, and/or marker for each system, for example,

lsim(sys1,'y:',sys2,'g--',u,t,x0)

The multisystem behavior is similar to that of bode or step.

When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. The matrix y has as many rows as time samples (length(t)) and as
many columns as system outputs. The same holds for x with “outputs” replaced
by states. Note that the output t may differ from the specified time vector when
the input data is undersampled (see Algorithm on page 155).

lsim(sys), with no additional arguments, opens the Linear Simulation Tool,
which affords greater flexibility in specifying input signals and initial
conditions. See “Specifying Input Signals and Input Conditions” in Getting
Started with the Control System Toolbox for more information.

Example Simulate and plot the response of the system

H s()

2s2 5s 1+ +

s2 2s 3+ +

s 1–

s2 s 5+ +

=

lsim

1-155

to a square wave with period of four seconds. First generate the square wave
with gensig. Sample every 0.1 second during 10 seconds:

[u,t] = gensig('square',4,10,0.1);

Then simulate with lsim.

H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)

Algorithm Discrete-time systems are simulated with ltitr (state space) or filter
(transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or
'foh' method ('foh' is used for smooth input signals and 'zoh' for
discontinuous signals such as pulses or square waves). The sampling period is
set to the spacing dt between the user-supplied time samples t.

The choice of sampling period can drastically affect simulation results. To
illustrate why, consider the second-order model

lsim

1-156

To simulate its response to a square wave with period 1 second, you can proceed
as follows:

w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values
lsim(h,u,t)

lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or
faster.

and produces this plot.

H s() ω2

s2 2s ω2
+ +

------------------------------- ,= ω 62.83=

lsim

1-157

To improve on this response, discretize using the recommended sampling
period:

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
lsim(hd,us,ts)

This response exhibits strong oscillatory behavior hidden from the
undersampled version.

See Also gensig Generate test input signals for lsim
impulse Impulse response
initial Free response to initial condition
ltiview LTI system viewer
step Step response

H s()

lsimplot

1-158

1lsimplotPurpose Simulate LTI model response to arbitrary inputs and return the plot handle

Syntax h = lsimplot(sys)

h = lsimplot(sys1,sys2,...)
h = lsimplot(sys,u,t)
h = lsimplot(sys,u,t,x0)
h = lsimplot(sys1,sys2,...,u,t,x0)
h = lsimplot(AX,...)
h = lsimplot(..., plotoptions)
h = lsimplot(sys,u,t,x0,'zoh')
h = lsimplot(sys,u,t,x0,'foh')

Description h = lsimplot(sys) opens the Linear Simulation Tool for the LTI model sys
(created with tf, zpk, or ss), which enables interactive specification of driving
input(s), the time vector, and initial state. It also returns the plot handle h. You
can use this handle to customize the plot with the getoptions and setoptions
commands. Type

help timeoptions

for a list of available plot options.

lsimplot(sys1,sys2,...) opens the Linear Simulation Tool for multiple LTI
models sys1,sys2,.... Driving inputs are common to all specified systems but
initial conditions can be specified separately for each.

lsimplot(sys,u,t) plots the time response of the LTI model sys to the input
signal described by u and t. The time vector t consists of regularly spaced time
samples. For MIMO systems, u is a matrix with as many columns as inputs and
whose ith row specifies the input value at time t(i). For SISO systems u can
be specified either as a row or column vector. For example,

t = 0:0.01:5;
u = sin(t);
lsimplot(sys,u,t)

simulates the response of a single-input model sys to the input u(t)=sin(t)
during 5 seconds.

lsimplot

1-159

For discrete-time models, u should be sampled at the same rate as sys (t is then
redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period t(2)-t(1) small
enough to accurately describe the input u. lsim issues a warning when u is
undersampled, and hidden oscillations can occur.

lsimplot(sys,u,t,x0) specifies the initial state vector x0 at time t(1) (for
state-space models only). x0 is set to zero when omitted.

lsimplot(sys1,sys2,...,u,t,x0) simulates the responses of multiple LTI
models sys1,sys2,... on a single plot. The initial condition x0 is optional. You
can also specify a color, line style, and marker for each system, as in

lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)

lsimplot(AX,...) plots into the axes with handle AX.

lsimplot(..., plotoptions) plots the initial condition response with the
options specified in plotoptions. Type

help timeoptions

for more detail.

For continuous-time models, lsimplot(sys,u,t,x0,'zoh') or
lsimplot(sys,u,t,x0,'foh') explicitly specifies how the input values should
be interpolated between samples (zero-order hold or linear interpolation). By
default, lsimplot selects the interpolation method automatically based on the
smoothness of the signal u.

See Also getoptions Get plot options
lsim Simulate LTI model response to arbitrary inputs
setoptions Set plot options

ltimodels

1-160

1ltimodelsPurpose Help on LTI models

Syntax ltimodels
ltimodels(modeltype)

Description ltimodels displays general information on the various types of LTI models
supported in the Control System Toolbox.

ltimodels(modeltype) gives additional details and examples for each type of
LTI model. The string modeltype selects the model type among the following:

• tf — Transfer functions (TF objects)

• zpk — Zero-pole-gain models (ZPK objects)

• ss — State-space models (SS objects)

• frd — Frequency response data models (FRD objects).

Note that you can type

ltimodels zpk

as a shorthand for

ltimodels('zpk')

 See Also frd Create or convert to FRD models
ltiprops Help on LTI model properties
ss Create or convert to a state-space model
tf Create or convert to a transfer function model
zpk Create or convert to a zero/pole/gain model

ltiprops

1-161

1ltipropsPurpose Help on LTI model properties

Syntax ltimodels

ltimodels(modeltype)

Description ltiprops displays details on the generic properties of LTI models.

ltiprops(modeltype) gives details on the properties specific to the various
types of LTI models. The string modeltype selects the model type among the
following:

• tf — transfer functions (TF objects)

• zpk — zero-pole-gain models (ZPK objects)

• ss — state-space models (SS objects)

• frd — frequency response data (FRD objects).

Note that you can type

ltiprops tf

as a shorthand for

ltiprops('tf')

See also get Get the properties for an LTI model
ltimodels Help on LTI models
set Set or modify LTI model properties

ltiview

1-162

1ltiviewPurpose Initialize an LTI Viewer for LTI system response analysis

Syntax ltiview
ltiview(sys1,sys2,...,sysn)
ltiview('plottype',sys1,sys2,...,sysn)
ltiview('plottype',sys,extras)
ltiview('clear',viewers)
ltiview('current',sys1,sys2,...,sysn,viewers)

Description ltiview when invoked without input arguments, initializes a new LTI Viewer
for LTI system response analysis.

ltiview(sys1,sys2,...,sysn) opens an LTI Viewer containing the step
response of the LTI models sys1,sys2,...,sysn. You can specify a distinctive
color, line style, and marker for each system, as in

sys1 = rss(3,2,2);
sys2 = rss(4,2,2);
ltiview(sys1,'r-*',sys2,'m--');

ltiview('plottype',sys) initializes an LTI Viewer containing the LTI
response type indicated by plottype for the LTI model sys. The string
plottype can be any one of the following:

'step'
'impulse'
'initial'
'lsim'
'pzmap'
'bode'
'nyquist'
'nichols'
'sigma'

or,

plottype can be a cell vector containing up to six of these plot types. For
example,

ltiview({'step';'nyquist'},sys)

displays the plots of both of these response types for a given system sys.

ltiview

1-163

ltiview(plottype,sys,extras) allows the additional input arguments
supported by the various LTI model response functions to be passed to the
ltiview command.

extras is one or more input arguments as specified by the function named in
plottype. These arguments may be required or optional, depending on the type
of LTI response. For example, if plottype is 'step' then extras may be the
desired final time, Tfinal, as shown below.

ltiview('step',sys,Tfinal)

However, if plottype is 'initial', the extras arguments must contain the
initial conditions x0 and may contain other arguments, such as Tfinal.

ltiview('initial',sys,x0,Tfinal)

See the individual references pages of each possible plottype commands for a
list of appropriate arguments for extras.

ltiview('clear',viewers) clears the plots and data from the LTI Viewers
with handles viewers.

ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the
systems sys1,sys2,...,sysn to the LTI Viewers with handles viewers. If
these new systems do not have the same I/O dimensions as those currently in
the LTI Viewer, the LTI Viewer is first cleared and only the new responses are
shown.

Finally,

ltiview(plottype,sys1,sys2,...sysN)
ltiview(plottype,sys1,PlotStyle1,sys2,PlotStyle2,...)
ltiview(plottype,sys1,sys2,...sysN,extras)

initializes an LTI Viewer containing the responses of multiple LTI models,
using the plot styles in PlotStyle, when applicable. See the individual
reference pages of the LTI response functions for more information on
specifying plot styles.

See Also bode Bode response
impulse Impulse response
initial Response to initial condition
lsim Simulate LTI model response to arbitrary inputs

ltiview

1-164

nichols Nichols response
nyquist Nyquist response
pzmap Pole/zero map
sigma Singular value response
step Step response

lyap

1-165

1lyapPurpose Solve continuous-time Lyapunov equations

Syntax X = lyap(A,Q)
X = lyap(A,B,C)
X = lyap(A,Q,[],E)

Description lyap solves the special and general forms of the Lyapunov matrix equation.
Lyapunov equations arise in several areas of control, including stability theory
and the study of the RMS behavior of systems.

X = lyap(A,Q) solves the Lyapunov equation

where and are square matrices of identical sizes. The solution X is a
symmetric matrix if is.

X = lyap(A,B,C) solves the Sylvester equation

The matrices A, B, and C must have compatible dimensions but need not be
square.

X = lyap(A,Q,[],E) solves the generalized Lyapunov equation

where Q is a symmetric matrix. The empty square brackets, [], are mandatory.
If you place any values inside them, the function will error out.

Algorithm lyap transforms the and matrices to complex Schur form, computes the
solution of the resulting triangular system, and transforms this solution back
[1].

lyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations
and SB04MD (SLICOT) and ZTRSYL (LAPACK) for Sylvester equations.

AX XAT Q+ + 0=

A Q
Q

AX XB C+ + 0=

AXET EXAT Q+ + 0=

A B

lyap

1-166

Limitations The continuous Lyapunov equation has a (unique) solution if the eigenvalues
 of and of satisfy

If this condition is violated, lyap produces the error message

Solution does not exist or is not unique.

References [1] Bartels, R.H. and G.W. Stewart, “Solution of the Matrix Equation AX + XB
= C,” Comm. of the ACM, Vol. 15, No. 9, 1972.

[2] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975. pp. 328–338.

See Also covar Covariance of system response to white noise
dlyap Solve discrete Lyapunov equations

α1 α2 ... αn, , , A β1 β2 ... βn, , , B

αi βj 0≠+ for all pairs i j,()

lyapchol

1-167

1lyapcholPurpose Square-root solver for continuous-time Lyapunov equations

Syntax R = lypachol(A,B)
R = lyapchol(A,B,E)

Description R = lyapchol(A,B) computes a Cholesky factorization X = R'*R of the solution
X to the Lyapunov matrix equation:

A*X + X*A' + B*B' = 0

All eigenvalues of matrix A must lie in the open left half-plane for R to exist.

X = lyapchol(A,B,E) computes a Cholesky factorization X = R'*R of X solving
the generalized Lyapunov equation:

A*X*E' + E*X*A' + B*B' = 0

All generalized eigenvalues of (A,E) must lie in the open left half-plane for R to
exist.

Algorithm lyapchol uses SLICOT routines SB03OD and SG03BD.

See Also lyap Solver for continuous-time Lyapunov equations
dlyapchol Square-root solver for discrete-time Lyapunov

equations

margin

1-168

1marginPurpose Compute gain and phase margins and associated crossover frequencies

Syntax [Gm,Pm,Wcg,Wcp] = margin(sys)
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)
margin(sys)

Description margin calculates the minimum gain margin, phase margin, and associated
crossover frequencies of SISO open-loop models. The gain and phase margins
indicate the relative stability of the control system when the loop is closed.
When invoked without left-hand arguments, margin produces a Bode plot and
displays the margins on this plot.

The gain margin is the amount of gain increase required to make the loop gain
unity at the frequency where the phase angle is –180°. In other words, the gain
margin is if is the gain at the –180° phase frequency. Similarly, the
phase margin is the difference between the phase of the response and –180°
when the loop gain is 1.0. The frequency at which the magnitude is 1.0 is called
the unity-gain frequency or crossover frequency. It is generally found that gain
margins of three or more combined with phase margins between 30 and 60
degrees result in reasonable trade-offs between bandwidth and stability.

[Gm,Pm,Wcg,Wcp] = margin(sys) computes the gain margin Gm, the phase
margin Pm, and the corresponding crossover frequencies Wcg and Wcp, given the
SISO open-loop model sys. This function handles both continuous- and
discrete-time cases. When faced with several crossover frequencies, margin
returns the smallest gain and phase margins.

[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) derives the gain and phase
margins from the Bode frequency response data (magnitude, phase, and
frequency vector). Interpolation is performed between the frequency points to
estimate the margin values. This approach is generally less accurate.

When invoked without left-hand argument,

margin(sys)

plots the open-loop Bode response with the gain and phase margins marked by
vertical lines.

1 g⁄ g

margin

1-169

Example You can compute the gain and phase margins of the open-loop discrete-time
transfer function. Type

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)

 MATLAB responds with

Transfer function:
 0.04798 z + 0.0464

z^2 - 1.81 z + 0.9048

Sampling time: 0.1

Type

[Gm,Pm,Wcg,Wcp] = margin(hd);
[Gm,Pm,Wcg,Wcp]

and MATLAB returns

ans =
2.0517 13.5711 5.4374 4.3544

You can also display these margins graphically.

margin

1-170

margin(hd)

Algorithm The phase margin is computed using theory, and the gain margin by
solving for the frequency .

See Also bode Bode frequency response
ltiview LTI system viewer

H∞
H jω() H jω()= ω

minreal

1-171

1minrealPurpose Minimal realization or pole-zero cancellation

Syntax sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)

Description sysr = minreal(sys) eliminates uncontrollable or unobservable state in
state-space models, or cancels pole-zero pairs in transfer functions or
zero-pole-gain models. The output sysr has minimal order and the same
response characteristics as the original model sys.

sysr = minreal(sys,tol) specifies the tolerance used for state elimination or
pole-zero cancellation. The default value is tol = sqrt(eps) and increasing
this tolerance forces additional cancellations.

[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an
orthogonal matrix U such that (U*A*U',U*B,C*U') is a Kalman decomposition
of (A,B,C)

Example The commands

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

produce the nonminimal zero-pole-gain model by typing cloop.

Zero/pole/gain:
 s (s-1)

(s-1) (s^2 + s + 1)

To cancel the pole-zero pair at , type

cloop = minreal(cloop)

and MATLAB returns

Zero/pole/gain:
 s

(s^2 + s + 1)

s 1=

minreal

1-172

Algorithm Pole-zero cancellation is a straightforward search through the poles and zeros
looking for matches that are within tolerance. Transfer functions are first
converted to zero-pole-gain form.

See Also balreal Grammian-based input/output balancing
modred Model order reduction
sminreal Structured model reduction

modred

1-173

1modredPurpose Model order reduction

Syntax rsys = modred(sys,elim)
rsys = modred(sys,elim,'method')

Description modred reduces the order of a continuous or discrete state-space model sys by
eliminating the states found in the vector elim. The full state vector X is
partitioned as X = [X1;X2] where X2 is to be discarded, and the reduced state
is set to Xr = X1+T*X2 where T is chosen to enforce matching DC gains
(steady-state response) between sys and rsys.

elim can be a vector of indices or a logical vector commensurate with X where
true values mark states to be discarded. This function is usually used in
conjunction with balreal. Use balreal to first isolate states with negligible
contribution to the I/O response. If sys has been balanced with balreal and the
vector g of Hankel singular values has M small entries, you can use modred to
eliminate the corresponding M states. For example:

[sys,g] = balreal(sys) % Compute balanced realization
elim = (g<1e-8) % Small entries of g are negligible states
rsys = modred(sys,elim) % Remove negligible states

rsys = modred(sys,elim,'method') also specifies the state elimination
method. Choices for 'method' include

• 'MatchDC': Enforce matching DC gains (default)

• 'Truncate': Simply delete X2 and sets Xr = X1.

The 'Truncate' option tends to produces a better approximation in the
frequency domain, but the DC gains are not guaranteed to match.

If the state-space model sys has been balanced with balreal and the
grammians have small diagonal entries, you can reduce the model order by
eliminating the last states with modred.

Example1 Consider the continuous fourth-order model

m
m

h s() s3 11s2 36s 26+ + +

s4 14.6+ s
3

74.96s2 153.7s 99.65+ + +
--=

modred

1-174

To reduce its order, first compute a balanced state-space realization with
balreal by typing

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)
g'

MATLAB returns

ans =
 1.3938e-01 9.5482e-03 6.2712e-04 7.3245e-06

The last three diagonal entries of the balanced grammians are small, so
eliminate the last three states with modred using both matched DC gain and
direct deletion methods.

hmdc = modred(hb,2:4,'MatchDC')
hdel = modred(hb,2:4,'Truncate')

Both hmdc and hdel are first-order models. Compare their Bode responses
against that of the original model .h s()

modred

1-175

bode(h,'-',hmdc,'x',hdel,'*')

The reduced-order model hdel is clearly a better frequency-domain
approximation of . Now compare the step responses.h s()

modred

1-176

step(h,'-',hmdc,'-.',hdel,'--')

While hdel accurately reflects the transient behavior, only hmdc gives the true
steady-state response.

Algorithm The algorithm for the matched DC gain method is as follows. For
continuous-time models

the state vector is partitioned into , to be kept, and , to be eliminated.

x· Ax Bu+=

y Cx Du+=

x1 x2

x·1

x·2

A11 A12

A21 A22

x1

x2

B1

B2

u+=

y C1 C2 x Du+=

modred

1-177

Next, the derivative of is set to zero and the resulting equation is solved for
. The reduced-order model is given by

The discrete-time case is treated similarly by setting

Limitations With the matched DC gain method, must be invertible in continuous time,
and must be invertible in discrete time.

See Also balreal Input/output balancing of state-space models
minreal Minimal state-space realizations

x2
x1

x·1 A11 A12A22
1– A21–[]x1 B1 A12A22

1– B2–[]u+=

y C1 C2A22
1– A21–[]x D C2A22

1– B2–[]u+=

x2 n 1+[] x2 n[]=

A22
I A22–

modsep

1-178

1modsepPurpose Region-based modal decomposition

Syntax [H,H0] = modsep(G,N,REGIONFCN)
[H,H0] = modsep(G,N,REGIONFCN,PARAM1,...)

Description [H,H0] = modsep(G,N,REGIONFCN) decomposes the LTI model G into a sum of
n simpler models Hj with their poles in disjoint regions Rj of the complex plane:

G can be any LTI model created with ss, tf, or zpk, and N is the number of
regions used in the decomposition. modsep packs the submodels Hj into an LTI
array H and returns the static gain H0 separately. Use H(:,:,j) to retrieve the
submodel Hj(s).

To specify the regions of interest, use a function of the form

IR = REGIONFCN(p)

that assigns a region index IR between 1 and N to a given pole p. You can specify
this function as a string or a function handle, and use the syntax
MODSEP(G,N,REGIONFCN,PARAM1,...) to pass extra input arguments:

IR = REGIONFCN(p,PARAM1,...)

 Example To decompose G into G(z) = H0 + H1(z) + H2(z) where H1 and H2 have their
poles inside and outside the unit disk respectively, use

[H,H0] = modsep(G,2,@udsep)

where the function udsep is defined by

function r = udsep(p)
if abs(p)<1, r = 1; % assign r=1 to poles inside unit disk
else r = 2; % assign r=2 to poles outside unit disk
end

To extract H1(z) and H2(z) from the LTI array H, use

H1 = H(:,:,1); H2 = H(:,:,2);

 See Also stabsep Stable/unstable decomposition of LTI models

G s() H0 Hj s()
j 1=

N
∑+=

ndims

1-179

1ndimsPurpose Provide the number of the dimensions of an LTI model or LTI array

Syntax n = ndims(sys)

Description n = ndims(sys) is the number of dimensions of an LTI model or an array of
LTI models sys. A single LTI model has two dimensions (one for outputs, and
one for inputs). An LTI array has 2+p dimensions, where is the number
of array dimensions. For example, a 2-by-3-by-4 array of models has 2+3=5
dimensions.

ndims(sys) = length(size(sys))

Example sys = rss(3,1,1,3);
ndims(sys)

ans =
 4

ndims returns 4 for this 3-by-1 array of SISO models.

See Also size Returns a vector containing the lengths of the
dimensions of an LTI array or model

p 2≥

ngrid

1-180

1ngridPurpose Superimpose a Nichols chart on a Nichols plot

Syntax ngrid

Description ngrid superimposes Nichols chart grid lines over the Nichols frequency
response of a SISO LTI system. The range of the Nichols grid lines is set to
encompass the entire Nichols frequency response.

The chart relates the complex number to , where is any
complex number. For SISO systems, when is a point on the open-loop
frequency response, then

is the corresponding value of the closed-loop frequency response assuming unit
negative feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the
region –40 dB to 40 dB in magnitude and –360 degrees to 0 degrees in phase.
If the current axis does not contain a SISO Nichols frequency response, ngrid
returns a warning.

Example Plot the Nichols response with Nichols grid lines for the system.

Type

H = tf([-4 48 -18 250 600],[1 30 282 525 60])

 MATLAB returns

Transfer function:
- 4 s^4 + 48 s^3 - 18 s^2 + 250 s + 600

 s^4 + 30 s^3 + 282 s^2 + 525 s + 60

Type

nichols(H)

H 1 H+()⁄ H H
H

H
1 H+

H s() 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---=

ngrid

1-181

ngrid

See Also nichols Nichols plots

nichols

1-182

1nicholsPurpose Compute Nichols frequency response of LTI models

Syntax nichols(sys)
nichols(sys,w)

nichols(sys1,sys2,...,sysN)
nichols(sys1,sys2,...,sysN,w)
nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

Description nichols computes the frequency response of an LTI model and plots it in the
Nichols coordinates. Nichols plots are useful to analyze open- and closed-loop
properties of SISO systems, but offer little insight into MIMO control loops.
Use ngrid to superimpose a Nichols chart on an existing SISO Nichols plot.

nichols(sys) produces a Nichols plot of the LTI model sys. This model can be
continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces
an array of Nichols plots, each plot showing the response of one particular I/O
channel. The frequency range and gridding are determined automatically
based on the system poles and zeros.

nichols(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval [wmin,wmax],
set w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in radians/sec.

nichols(sys1,sys2,...,sysN) or nichols(sys1,sys2,...,sysN,w)
superimposes the Nichols plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments,

nichols

1-183

[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays similar to
those produced by bode (see the bode reference page). They have dimensions

Example Plot the Nichols response of the system

num = [-4 48 -18 250 600];
den = [1 30 282 525 60];
H = tf(num,den)

nichols(H); ngrid

number of outputs() number of inputs()× length of w()×

H s() 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---=

nichols

1-184

The right-click menu for Nichols plots includes the Tight option under Zoom.
You can use this to clip unbounded branches of the Nichols plot.

Algorithm See bode.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
ngrid Grid on Nichols plot
nyquist Nyquist plot
sigma Singular value plot

nicholsplot

1-185

1nicholsplotPurpose Plot Nichols frequency response and return the plot handle

Syntax h = nicholsplot(sys)

h = nicholsplot(sys,{wmin,wmax})
h = nicholsplot(sys,w)
h = nicholsplot(sys1,sys2,...,w)
h = nicholsplot(AX,...)
h = nicholsplot(..., plotoptions)

Description h = nicholsplot(sys) draws the nichols plot of the LTI model sys (created
with tf, zpk, ss, or frd). It also returns the plot handle h. You can use this
handle to customize the plot with the getoptions and setoptions commands.
Type

help nicholsoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode
for details on the notion of frequency in discrete time.

nicholsplot(sys,{wmin,wmax}) draws the Nichols plot for frequencies
between wmin and wmax (in rad/s).

nicholsplot(sys,w) uses the user-supplied vector w of frequencies, in radians/
second, at which the Nichols response is to be evaluated. See logspace to
generate logarithmically spaced frequency vectors.

nicholsplot(sys1,sys2,...,w) draws the Nichols plots of multiple LTI
models sys1,sys2,... on a single plot. The frequency vector w is optional. You
can also specify a color, line style, and marker for each system, as in

nicholsplot(sys1,'r',sys2,'y--',sys3,'gx').

nicholsplot(AX,...) plots into the axes with handle AX.

nicholsplot(..., plotoptions) plots the Nichols plot with the options
specified in plotoptions. Type

help nicholsoptions

for more details.

nicholsplot

1-186

Example Generate a Nichols plot and use the plot handle to change the frequency units
to Hz.

sys = rss(5);
h = nicholsplot(sys);
% Change units to Hz
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
nichols Compute Nichols frequency responses of LTI models
setoptions Set plot options

norm

1-187

1normPurpose Compute LTI model norms

Syntax norm(sys)
norm(sys,2)

norm(sys,inf)
norm(sys,inf,tol)
[ninf,fpeak] = norm(sys)

Description norm computes the or norm of a continuous- or discrete-time LTI model.

H2 Norm
The norm of a stable continuous system with transfer function , is the
root-mean-square of its impulse response, or equivalently

This norm measures the steady-state covariance (or power) of the output
response to unit white noise inputs .

Infinity Norm
The infinity norm is the peak gain of the frequency response, that is,

where denotes the largest singular value of a matrix.

The discrete-time counterpart is

H2 L∞

H2 H s()

H 2
1

2π
------ Trace H jω()HH jω()() ωd

∞–

∞

∫=

y Hw= w

H 2
2 E y t()Ty t(){ } ,

t ∞→
lim= E w t()w τ()T() δ t τ–()I=

H s() ∞ max H jω()=
ω

 (SISO case)

H s() ∞ max σmax H jω()()=
ω

 (MIMO case)

σmax .()

norm

1-188

Usage norm(sys) or norm(sys,2) both return the norm of the TF, SS, or ZPK
model sys. This norm is infinite in the following cases:

• sys is unstable.

• sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the
frequency).

Note that norm(sys) produces the same result as

sqrt(trace(covar(sys,1)))

norm(sys,inf) computes the infinity norm of any type of LTI model sys. This
norm is infinite if sys has poles on the imaginary axis in continuous time, or on
the unit circle in discrete time.

norm(sys,inf,tol) sets the desired relative accuracy on the computed
infinity norm (the default value is tol=1e-2).

[ninf,fpeak] = norm(sys,inf) also returns the frequency fpeak where the
gain achieves its peak value.

Example Consider the discrete-time transfer function

with sample time 0.1 second. Compute its norm by typing

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)

ans =
 1.2438

Compute its infinity norm by typing

[ninf,fpeak] = norm(H,inf)

H z() ∞ max σmax H ejθ()()=
θ 0 π,[]∈

H2

ω ∞=

H z() z3 2.841z2
– 2.875z 1.004–+

z3 2.417z2
– 2.003z 0.5488–+

---=

H2

norm

1-189

ninf =
 2.5488

fpeak =
 3.0844

These values are confirmed by the Bode plot of .

bode(H)

The gain indeed peaks at approximately 3 rad/sec and its peak value in dB is
found by typing

20*log10(ninf)

MATLAB returns

ans =

H z()

Frequency (rad/sec)

P
ha

se
 (d

eg
);

M
ag

ni
tu

de
 (d

B
)

Bode Diagrams

−5

0

5

10

10
−1

10
0

10
1

10
2

−400

−300

−200

−100

0

100

200

norm

1-190

 8.1268

Algorithm norm uses the same algorithm as covar for the norm, and the algorithm of
[1] for the infinity norm. sys is first converted to state space.

References [1] Bruisma, N.A. and M. Steinbuch, “A Fast Algorithm to Compute the
-Norm of a Transfer Function Matrix,” System Control Letters, 14 (1990),

pp. 287–293.

See Also bode Bode plot
freqresp Frequency response computation
sigma Singular value plot

H2

H∞

nyquist

1-191

1nyquistPurpose Compute Nyquist frequency response of LTI models

Syntax nyquist(sys)
nyquist(sys,w)

nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

Description nyquist calculates the Nyquist frequency response of LTI models. When
invoked without left-hand arguments, nyquist produces a Nyquist plot on the
screen. Nyquist plots are used to analyze system properties including gain
margin, phase margin, and stability.

nyquist(sys) plots the Nyquist response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. In the MIMO case,
nyquist produces an array of Nyquist plots, each plot showing the response of
one particular I/O channel. The frequency points are chosen automatically
based on the system poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval, set
w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in rad/sec.

nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w)
superimposes the Nyquist plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments

nyquist

1-192

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at the
frequencies w (in rad/sec). re and im are 3-D arrays (see “Arguments” below for
details).

Arguments The output arguments re and im are 3-D arrays with dimensions

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real and
imaginary parts of the response at the frequency .

For MIMO systems with transfer function , re(:,:,k) and im(:,:,k)
give the real and imaginary parts of (both arrays with as many rows
as outputs and as many columns as inputs). Thus,

where is the transfer function from input to output .

Example Plot the Nyquist response of the system

H = tf([2 5 1],[1 2 3])

number of outputs() number of inputs()× length of w()×

ωk w(k)=

re(1,1,k) Re h jωk()()=

im(1,1,k) Im h jωk()()=

H s()
H jωk()

re(i,j,k) Re hij jωk()()=

im(i,j,k) Im hij jωk()()=

hij j i

H s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

nyquist

1-193

nyquist(H)

The nyquist function has support for M-circles, which are the contours of the
constant closed-loop magnitude. M-circles are defined as the locus of complex
numbers where

is a constant value. In this equation, ω is the frequency in radians/second, and
G is the collection of complex numbers that satisfy the constant magnitude
requirement.

To activate the grid, select Grid from the right-click menu or type

grid

T jω() G jω()
1 G jω()+
-------------------------=

nyquist

1-194

at the MATLAB prompt. This figure shows the M circles for transfer function
H.

You have two zoom options available from the right-click menu that apply
specifically to Nyquist plots:

• Tight —Clips unbounded branches of the Nyquist plot, but still includes the
critical point (-1, 0)

• On (-1,0) — Zooms around the critical point (-1,0)

nyquist

1-195

Also, click anywhere on the curve to activate data markers that display the real
and imaginary values at a given frequency. This figure shows the nyquist plot
with a data marker.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
sigma Singular value plot

nyquistplot

1-196

1nyquistplotPurpose Plot Nyquist frequency response and return the plot handle

Syntax h = nyquistplot(sys)

h = nyquistplot(sys,{wmin,wmax})
h = nyquistplot(sys,w)
h = nyquistplot(sys1,sys2,...,w)
h = nyquistplot(AX,...)
h = nyquistplot(..., plotoptions)

Description h = nyquistplot(sys) draws the Nyquist plot of the LTI model sys (created
with tf, zpk, ss, or frd). It also returns the plot handle h. You can use this
handle to customize the plot with the getoptions and setoptions commands.
Type

help nyquistoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode
for details on the notion of frequency in discrete time.

nyquistplot(sys,{wmin,wmax}) draws the Nyquist plot for frequencies
between wmin and wmax (in rad/s).

nyquistplot(sys,w) uses the user-supplied vector w of frequencies (in rad/s)
at which the Nyquist response is to be evaluated. See logspace to generate
logarithmically spaced frequency vectors.

nyquistplot(sys1,sys2,...,w) draws the Nyquist plots of multiple LTI
models sys1,sys2,... on a single plot. The frequency vector w is optional. You
can also specify a color, line style, and marker for each system, as in

nyquistplot(sys1,'r',sys2,'y--',sys3,'gx').

nyquistplot(AX,...) plots into the axes with handle AX.

nyquistplot(..., plotoptions) plots the Nyquist response with the options
specified in plotoptions. Type

help nyquistoptions

for more details.

nyquistplot

1-197

Example Plot the Nyquist frequency response and change the units to Hz.

sys = rss(5);
h = nicholsplot(sys);
% Change units to Hz
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
nyquist Nyquist frequency response of LTI models
setoptions Set plot options

obsv

1-198

1obsvPurpose Form the observability matrix

Syntax Ob = obsv(A,B)
Ob = obsv(sys)

Description obsv computes the observability matrix for state-space systems. For an n-by-n
matrix A and a p-by-n matrix C, obsv(A,C) returns the observability matrix

with n columns and np rows.

Ob = obsv(sys) calculates the observability matrix of the state-space model
sys. This syntax is equivalent to executing

Ob = obsv(sys.A,sys.C)

The model is observable if Ob has full rank n.

Example Determine if the pair

A =
 1 1
 4 -2

C =
 1 0
 0 1

is observable. Type

Ob = obsv(A,C);

% Number of unobservable states
unob = length(A)-rank(Ob)

Ob

C
CA

CA2

:

CAn 1–

=

obsv

1-199

MATLAB responds with

unob =
 0

See Also obsvf Compute the observability staircase form

obsvf

1-200

1obsvfPurpose Compute the observability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C,tol)

Description If the observability matrix of (A,C) has rank , where n is the size of A, then
there exists a similarity transformation such that

where is unitary and the transformed system has a staircase form with the
unobservable modes, if any, in the upper left corner.

where is observable, and the eigenvalues of are the unobservable
modes.

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system
with matrices A, B, and C into the observability staircase form Abar, Bbar, and
Cbar, as described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the number of states in A. Each entry of k
represents the number of observable states factored out during each step of the
transformation matrix calculation [1]. The number of nonzero elements in k
indicates how many iterations were necessary to calculate T, and sum(k) is the
number of states in , the observable portion of Abar.

obsvf(A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(a,1)*eps.

Example Form the observability staircase form of

A =
 1 1
 4 -2

B =

r n≤

A TATT,= B TB,= C CTT
=

T

A
Ano A12

0 Ao

,= B
Bno

Bo

,= C 0 Co=

Co Ao,() Ano

Ao

obsvf

1-201

 1 -1
 1 -1

C =
 1 0
 0 1

by typing

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)

Abar =
 1 1
 4 -2
Bbar =
 1 1
 1 -1
Cbar =
 1 0
 0 1
T =
 1 0
 0 1
k =
 2 0

Algorithm obsvf is an M-file that implements the Staircase Algorithm of [1] by calling
ctrbf and using duality.

 References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.

See Also ctrbf Compute the controllability staircase form
obsv Calculate the observability matrix

ord2

1-202

1ord2Purpose Generate continuous second-order systems

Syntax [A,B,C,D] = ord2(wn,z)
[num,den] = ord2(wn,z)

Description [A,B,C,D] = ord2(wn,z) generates the state-space description (A,B,C,D) of
the second-order system

given the natural frequency wn () and damping factor z (). Use ss to turn
this description into a state-space object.

[num,den] = ord2(wn,z) returns the numerator and denominator of the
second-order transfer function. Use tf to form the corresponding transfer
function object.

Example To generate an LTI model of the second-order transfer function with damping
factor and natural frequency , type

[num,den] = ord2(2.4,0.4)

num =
 1
den =
 1.0000 1.9200 5.7600

sys = tf(num,den)

Transfer function:
 1

s^2 + 1.92 s + 5.76

See Also rss Generate random stable continuous models
ss Create a state-space LTI model
tf Create a transfer function LTI model

h s() 1

s2 2ζωns ωn
2

+ +
---=

ωn ζ

ζ 0.4= ωn 2.4 rad/sec.=

lti/order

1-203

1lti/orderPurpose LTI model order

Syntax ns = order(sys)

Description ns = order(sys) returns the model order ns. The order of an LTI model is the
number of poles (for transfer functions) or the number of states (for state-space
models).

For LTI arrays, ns is an array of the same size listing the orders of each model
in sys.

order(sys) is an overloaded method that accepts SS, TF, and ZPK models.

See Also pole Computes the poles of LTI models
balred Model order reduction
ltimodels Help on LTI models

pade

1-204

1padePurpose Compute the Padé approximation of models with time delays

Syntax [num,den] = pade(T,N)
pade(T,N)

sysx = pade(sys,N)
sysx = pade(sys,NI,NO,Nio)

Description pade approximates time delays by rational LTI models. Such approximations
are useful to model time delay effects such as transport and computation
delays within the context of continuous-time systems. The Laplace transform
of an time delay of seconds is . This exponential transfer function
is approximated by a rational transfer function using the Padé approximation
formulas [1].

[num,den] = pade(T,N) returns the Nth-order (diagonal) Padé approximation
of the continuous-time I/O delay in transfer function form. The row
vectors num and den contain the numerator and denominator coefficients in
descending powers of . Both are Nth-order polynomials.

When invoked without output arguments,

pade(T,N)

plots the step and phase responses of the Nth-order Padé approximation and
compares them with the exact responses of the model with I/O delay T. Note
that the Padé approximation has unit gain at all frequencies.

sysx = pade(sys,N) produces a delay-free approximation sysx of the
continuous delay system sys. All delays are replaced by their Nth-order Padé
approximation. See Time Delays for details on LTI models with delays.

sysx = pade(sys,NI,NO,Nio) specifies independent approximation orders for
each input, output, and I/O delay. These approximation orders are given by the
arrays of integers NI, NO, and Nio, such that:

• NI(j) is the approximation order for the j-th input channel.

• NO(i) is the approximation order for the i-th output channel.

• Nio(i,j) is the approximation order for the I/O delay from input j to output
i.

T sT–()exp

sT–()exp

s

pade

1-205

You can use scalar values to specify uniform approximation orders, and [] if
there are no input, output, or I/O delays.

Example Compute a third-order Padé approximation of a 0.1 second I/O delay and
compare the time and frequency responses of the true delay and its
approximation. To do this, type

pade(0.1,3)

Limitations High-order Padé approximations produce transfer functions with clustered
poles. Because such pole configurations tend to be very sensitive to
perturbations, Padé approximations with order N>10 should be avoided.

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1989, pp. 557–558.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1

−0.5

0

0.5

1

1.5

Time (secs)

A
m

pl
itu

de

Step response of 3rd−order Pade approximation

10
1

10
2

10
3

−1000

−800

−600

−400

−200

0

Frequency (rad/s)

P
ha

se
 (d

eg
.)

Phase response

pade

1-206

See Also c2d Discretization of continuous system
delay2z Changes transfer functions of discrete-time LTI models

with delays to rational functions or absorbs FRD delays
into the frequency response phase information

parallel

1-207

1parallelPurpose Parallel connection of two LTI models

Syntax sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)

Description parallel connects two LTI models in parallel. This function accepts any type
of LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as
regular matrices.

sys = parallel(sys1,sys2) forms the basic parallel connection shown below.

This command is equivalent to the direct addition

sys = sys1 + sys2

(See Addition and Subtraction for details on LTI system addition.)

sys1

sys2

u y
+

+

sys

parallel

1-208

sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more general
parallel connection.

The index vectors inp1 and inp2 specify which inputs of sys1 and which
inputs of sys2 are connected. Similarly, the index vectors out1 and out2
specify which outputs of sys1 and which outputs of sys2 are summed.
The resulting model sys has as inputs and as
outputs.

Example See Kalman Filtering for an example.

See Also append Append LTI systems
feedback Feedback connection
series Series connection

sys1

sys2

+
+

sys

u

u2

u1

y2

y1

y

z1
v1

z2
v2

u1
u2

y1 y2
v1 u v2;;[] z1 y z2;;[]

place

1-209

1placePurpose Pole placement design

Syntax K = place(A,B,p)
[K,prec,message] = place(A,B,p)

Description Given the single- or multi-input system

and a vector p of desired self-conjugate closed-loop pole locations, place
computes a gain matrix K such that the state feedback places the
closed-loop poles at the locations p. In other words, the eigenvalues of
match the entries of p (up to the ordering).

K = place(A,B,p) computes a feedback gain matrix K that achieves the
desired closed-loop pole locations p, assuming all the inputs of the plant are
control inputs. The length of p must match the row size of A. place works for
multi-input systems and is based on the algorithm from [1]. This algorithm
uses the extra degrees of freedom to find a solution that minimizes the
sensitivity of the closed-loop poles to perturbations in or .

[K,prec,message] = place(A,B,p) also returns prec, an estimate of how
closely the eigenvalues of match the specified locations p (prec
measures the number of accurate decimal digits in the actual closed-loop
poles). If some nonzero closed-loop pole is more than 10% off from the desired
location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix
and substituting C' for B.

l = place(A',C',p).'

Example Consider a state-space system (a,b,c,d) with two inputs, three outputs, and
three states. You can compute the feedback gain matrix needed to place the
closed-loop poles at p = [1.1 23 5.0] by

p = [1 1.23 5.0];
K = place(a,b,p)

x· Ax Bu+=

u Kx–=
A BK–

A B

A BK–

place

1-210

Algorithm place uses the algorithm of [1] which, for multi-input systems, optimizes the
choice of eigenvectors for a robust solution. We recommend place rather than
acker even for single-input systems.

In high-order problems, some choices of pole locations result in very large
gains. The sensitivity problems attached with large gains suggest caution in
the use of pole placement techniques. See [2] for results from numerical testing.

References [1] Kautsky, J. and N.K. Nichols, “Robust Pole Assignment in Linear State
Feedback,” Int. J. Control, 41 (1985), pp. 1129–1155.

[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and
Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA,
Sept. 1984.

See Also acker Pole placement using Ackermann’s formula
lqr State-feedback LQ regulator design
rlocus Root locus design

pole

1-211

1polePurpose Compute the poles of an LTI system

Syntax p = pole(sys)

Description pole computes the poles p of the SISO or MIMO LTI model sys.

Algorithm For state-space models, the poles are the eigenvalues of the matrix, or the
generalized eigenvalues of in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the
denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are
computed as the union of the poles for each SISO entry. If some columns or
rows have a common denominator, the roots of this denominator are counted
only once.

Limitations Multiple poles are numerically sensitive and cannot be computed to high
accuracy. A pole with multiplicity typically gives rise to a cluster of
computed poles distributed on a circle with center and radius of order

where is the relative machine precision (eps).

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pzmap Pole-zero map
zero Compute (transmission) zeros

A
A λE–

λ m
λ

ρ ε1 m⁄≈

ε

pzmap

1-212

1pzmapPurpose Compute the pole-zero map of an LTI model

Syntax pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

Description pzmap(sys) plots the pole-zero map of the continuous- or discrete-time LTI
model sys. For SISO systems, pzmap plots the transfer function poles and zeros.
For MIMO systems, it plots the system poles and transmission zeros. The poles
are plotted as x’s and the zeros are plotted as o’s.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map of several LTI models on
a single figure. The LTI models can have different numbers of inputs and
outputs and can be a mix of continuous and discrete systems.

When invoked with left-hand arguments,

[p,z] = pzmap(sys)

returns the system poles and (transmission) zeros in the column vectors p and
z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio
and natural frequency in the - or -plane.

Example Plot the poles and zeros of the continuous-time system.

H = tf([2 5 1],[1 2 3]); sgrid

s z

H s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

pzmap

1-213

pzmap(H)

Algorithm pzmap uses a combination of pole and zero.

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pole Compute system poles
rlocus Root locus
sgrid, zgrid Plot lines of constant damping and natural frequency
zero Compute system (transmission) zeros

pzplot

1-214

1pzplotPurpose Compute the pole-zero map of an LTI model and return the plot handle

Syntax h = pzplot(sys)

h = pzplot(sys1,sys2,...)
h = pzplot(AX,...)
h = pzplot(..., plotoptions)

Description h = pzplot(sys) computes the poles and (transmission) zeros of the LTI model
sys and plots them in the complex plane. The poles are plotted as x’s and the
zeros are plotted as o’s. It also returns the plot handle h. You can use this
handle to customize the plot with the getoptions and setoptions commands.
Type

help pzoptions

for a list of available plot options.

pzplot(sys1,sys2,...) shows the poles and zeros of multiple LTI models
sys1,sys2,... on a single plot. You can specify distinctive colors for each model,
as in

pzplot(sys1,'r',sys2,'y',sys3,'g')

pzplot(AX,...) plots into the axes with handle AX.

pzplot(..., plotoptions) plots the poles and zeros with the options specified
in plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant damping ratio
and natural frequency in the s- or z-plane.

For arrays sys of LTI models, pzmap plots the poles and zeros of each model in
the array on the same diagram.

Example Use the plot handle to change the color of the plot’s title.

sys = rss(3,2,2);
h = rlocusplot(sys);

pzplot

1-215

p = getoptions(h); % Get options for plot.
p.Title.Color = [1,0,0]; % Change title color in options.
setoptions(h,p); % Apply options to plot.

See Also getoptions Get plot options
pzmap Compute the pole-zero map of an LTI model
setoptions Set plot options

reg

1-216

1regPurpose Form regulator given state-feedback and estimator gains

Syntax rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)

Description rsys = reg(sys,K,L) forms a dynamic regulator or compensator rsys given a
state-space model sys of the plant, a state-feedback gain matrix K, and an
estimator gain matrix L. The gains K and L are typically designed using pole
placement or LQG techniques. The function reg handles both continuous- and
discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are
measured. The regulator rsys is obtained by connecting the state-feedback law

 and the state estimator with gain matrix L (see estim). For a plant
with equations

this yields the regulator

u K– x=

x· Ax Bu+=

y Cx Du+=

x̂
·

A LC– B LD–()K– x̂ Ly+=

u Kx̂–=

reg

1-217

This regulator should be connected to the plant using positive feedback.

rsys = reg(sys,K,L,sensors,known,controls) handles more general
regulation problems where:

• The plant inputs consist of controls , known inputs , and stochastic
inputs .

• Only a subset of the plant outputs is measured.

The index vectors sensors, known, and controls specify , , and as
subsets of the outputs and inputs of sys. The resulting regulator uses
as inputs to generate the commands (see figure below).

u

y

x̂
K–

Regulator

u

Plant

y

State
Estimator

u ud
w

y

y ud u
ud ; y[]

u

x̂

u

y

ud K– u

Regulator rsys

Estimator

(gain L)
(known)

(sensors)

reg

1-218

Example Given a continuous-time state-space model

sys = ss(A,B,C,D)

with seven outputs and four inputs, suppose you have designed:

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as
control inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as
sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete
regulation system by

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys,K,L,sensors,known,controls)

See Also estim Form state estimator given estimator gain
kalman Kalman estimator design
lqgreg Form LQG regulator
lqr, dlqr State-feedback LQ regulator
place Pole placement

reshape

1-219

1reshapePurpose Change the shape of an LTI array

Syntax sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

Description sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1
s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by...-sk array of LTI
models. Equivalently, sys = reshape(sys,[s1 s2 ... sk]) reshapes the LTI
array sys into an s1-by-s2-by...-sk array of LTI models. With either syntax,
there must be s1*s2*...*sk models in sys to begin with.

Example sys = rss(4,1,1,2,3);
size(sys)

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

sys1 = reshape(sys,6);
size(sys1)

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

See Also ndims Provide the number of dimensions of an LTI array
size Provide the lengths of each dimension of an LTI array

rlocus

1-220

1rlocusPurpose Evans root locus

Syntax rlocus(sys)
rlocus(sys,k)
rlocus(sys1,sys2,...)

[r,k] = rlocus(sys)
r = rlocus(sys,k)

Description rlocus computes the Evans root locus of a SISO open-loop model. The root
locus gives the closed-loop pole trajectories as a function of the feedback gain

 (assuming negative feedback). Root loci are used to study the effects of
varying feedback gains on closed-loop pole locations. In turn, these locations
provide indirect information on the time and frequency responses.

rlocus(sys) calculates and plots the root locus of the open-loop SISO model
sys. This function can be applied to any of the following negative feedback loops
by setting sys appropriately.

If sys has transfer function

k

G

k

G

Fk

sys = G sys = F * G

C

k

G

sys = G * C

–

–

–

+

+

+

rlocus

1-221

the closed-loop poles are the roots of

rlocus adaptively selects a set of positive gains to produce a smooth plot.
Alternatively,

rlocus(sys,k)

uses the user-specified vector k of gains to plot the root locus.

rlocus(sys1,sys2,...) draws the root loci of multiple LTI models sys1,
sys2,... on a single plot. You can specify a color, line style, and marker for
each model, as in

rlocus(sys1,'r',sys2,'y:',sys3,'gx').

When invoked with output arguments,

[r,k] = rlocus(sys)
r = rlocus(sys,k)

return the vector k of selected gains and the complex root locations r for these
gains. The matrix r has length(k) columns and its jth column lists the
closed-loop roots for the gain k(j).

Example Find and plot the root-locus of the following system.

h = tf([2 5 1],[1 2 3]);

h s() n s()
d s()
-----------=

d s() k n s()+ 0=

k

h s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

rlocus

1-222

rlocus(h)

You can use the right-click menu for rlocus to add grid lines, zoom in or out,
and invoke the Property Editor to customize the plot. Also, click anywhere on
the curve to activate a data marker that displays the gain value, pole, damping,
overshoot, and frequency at the selected point.

See Also pole System poles
pzmap Pole-zero map

rlocusplot

1-223

1rlocusplotPurpose Calculate the root locus and return the plot handle

Syntax h = rlocusplot(sys)

h = rlocusplot(sys,k)
h = rlocusplot(sys1,sys2,...)
h = rlcousplot(AX,...)
h = rlocusplot(..., plotoptions)

Description h = rlocusplot(sys) computes and plots the root locus of the single-input,
single-output LTI model sys. It also returns the plot handle h. You can use this
handle to customize the plot with the getoptions and setoptions commands.
Type

help pzoptions

for a list of available plot options.

See rlocus for a discussion of the feedback structure and algorithms used to
calculate the root locus.

rlocusplot(sys,k) uses a user-specified vector k of gain values.

rlocusplot(sys1,sys2,...) draws the root loci of multiple LTI models sys1,
sys2,... on a single plot. You can specify a color, line style, and marker for each
model, as in

rlocusplot(sys1,'r',sys2,'y:',sys3,'gx')

rlocusplot(AX,...) plots into the axes with handle AX.

rlocusplot(..., plotoptions) plots the root locus with the options specified
in plotoptions. Type

help pzoptions

for more details.

Example Use the plot handle to change the title of the plot.

sys = rss(3,2,2);
h = rlocusplot(sys);
p = getoptions(h); % Get options for plot.

rlocusplot

1-224

p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to plot.

See Also getoptions Get plot options
rlocus Calculate root loci of LTI models
setoptions Set plot options

rss

1-225

1rssPurpose Generate stable random continuous test models

Syntax sys = rss(n)
sys = rss(n,p)
sys = rss(n,p,m)
sys = rss(n,p,m,s1,...,sn)

Description rss(n) produces a stable random n-th order model with one input and one
output and returns the model in the state-space object sys.

rss(n,p) produces a random nth order stable model with one input and p
outputs, and rss(n,m,p) produces a random n-th order stable model with m
inputs and p outputs. The output sys is always a state-space model.

rss(n,p,m,s1,...,sn)produces an s1-by-...-by-sn array of random n-th
order stable state-space models with m inputs and p outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function,
frequency response, or zero-pole-gain form.

Example Obtain a stable random continuous LTI model with three states, two inputs,
and two outputs by typing

sys = rss(3,2,2)

a =
 x1 x2 x3
 x1 -0.54175 0.09729 0.08304
 x2 0.09729 -0.89491 0.58707
 x3 0.08304 0.58707 -1.95271

b =
 u1 u2
 x1 -0.88844 -2.41459
 x2 0 -0.69435
 x3 -0.07162 -1.39139

c =
 x1 x2 x3
 y1 0.32965 0.14718 0
 y2 0.59854 -0.10144 0.02805

rss

1-226

d =
 u1 u2
 y1 -0.87631 -0.32758
 y2 0 0

Continuous-time system.

See Also drss Generate stable random discrete test models
frd Convert LTI systems to frequency response form
tf Convert LTI systems to transfer function form
zpk Convert LTI systems to zero-pole-gain form

series

1-227

1seriesPurpose Series connection of two LTI models

Syntax sys = series(sys1,sys2)
sys = series(sys1,sys2,outputs1,inputs2)

Description series connects two LTI models in series. This function accepts any type of
LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as
regular matrices.

sys = series(sys1,sys2) forms the basic series connection shown below.

This command is equivalent to the direct multiplication

sys = sys2 * sys1

See Multiplication for details on multiplication of LTI models.

sys = series(sys1,sys2,outputs1,inputs2) forms the more general series
connection.

sys1 sys2u y

sys

sys1

sys2

y1 u2

v2

z1

sys

u

y

series

1-228

The index vectors outputs1 and inputs2 indicate which outputs of sys1 and
which inputs of sys2 should be connected. The resulting model sys has
as input and as output.

Example Consider a state-space system sys1 with five inputs and four outputs and
another system sys2 with two inputs and three outputs. Connect the two
systems in series by connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of
sys2.

outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs1,inputs2)

See Also append Append LTI systems
feedback Feedback connection
parallel Parallel connection

y1
u2 u
y

set

1-229

1setPurpose Set or modify LTI model properties

Syntax set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)

set(sys,'Property')
set(sys)

Description set is used to set or modify the properties of an LTI model (see “LTI Properties”
for background on LTI properties). Like its Handle Graphics® counterpart, set
uses property name/property value pairs to update property values.

set(sys,'Property',Value) assigns the value Value to the property of the
LTI model sys specified by the string 'Property'. This string can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). The specified property must be compatible
with the model type. For example, if sys is a transfer function, Variable is a
valid property but StateName is not (see “Model-Specific Properties” for
details).

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple
property values with a single statement. Each property name/property value
pair updates one particular property.

set(sys,'Property') displays admissible values for the property specified by
'Property'. See “Property Values” below for an overview of legitimate LTI
property values.

set(sys) displays all assignable properties of sys and their admissible values.

Example Consider the SISO state-space model created by

sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque, reset the
 matrix to zero, and store its DC gain in the 'Userdata' property by

set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))

D

set

1-230

Note that set does not require any output argument. Check the result with get
by typing

get(sys)

a = 1
 b = 2
 c = 3
 d = 0
 e = []
 Nx = 1
 StateName = {''}
 Ts = 0
 InputDelay = 0.1
 OutputDelay = 0
 ioDelay = 0
 InputName = {'torque'}
 OutputName = {''}
 InputGroup = {0x2 cell}
 OutputGroup = {0x2 cell}
 Notes = {}
 UserData = -6

Property
Values

The following table lists the admissible values for each LTI property. and
 denotes the number of inputs and outputs of the underlying LTI model. For

K-dimensional LTI arrays, let denote the array dimensions.

Nu
Ny

S1 S2 … SK, , ,

set

1-231

Table 1-2: LTI Properties

Property Name Admissible Property Values

Ts • 0 (zero) for continuous-time systems

• Sample time in seconds for discrete-time systems

• -1 or [] for discrete systems with unspecified sample time

Note: Resetting the sample time property does not alter the model data. Use
c2d, d2c, or d2d for discrete/continuous and discrete/discrete conversions.

ioDelay Input/Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when all I/O pairs have the same delay

• -by- matrix to specify independent delay times for each I/O pair

• Array of size -by- -by- -by-. . .-by- to specify different I/O delays
for each model in an LTI array.

InputDelay Input delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when or system has uniform input delay

• Vector of length to specify independent delay times for each input
channel

• Array of size -by- -by- -by-. . .-by- to specify different input
delays for each model in an LTI array.

Ny Nu

Ny Nu S1 Sn

Nu 1=

Nu

Ny Nu S1 Sn

set

1-232

OutputDelay Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when or system has uniform output delay

• Vector of length to specify independent delay times for each output
channel

• Array of size -by- -by- -by-. . .-by- to specify different output
delays for each model in an LTI array.

Notes String, array of strings, or cell array of strings

UserData Arbitrary MATLAB variable

InputName • String for single-input systems, for example, 'thrust'

• Cell vector of strings for multi-input systems (with as many cells as inputs),
for example, {'u';'w'} for a two-input system

• Padded array of strings with as many rows as inputs, for example,
['rudder ' ; 'aileron']

OutputName Same as InputName (with “input” replaced by “output”)

InputGroup Cell array. See “Input Groups and Output Groups.”

OutputGroup Same as InputGroup

Table 1-2: LTI Properties (Continued)

Property Name Admissible Property Values

Ny 1=

Ny

Ny Nu S1 Sn

set

1-233

Table 1-3: State-Space Model Properties

Property Name Admissible Property Values

StateName Same as InputName (with Input replaced by State)

a, b, c, d, e Real- or complex-valued state-space matrices (multidimensional arrays, in
the case of LTI arrays) with compatible dimensions for the number of
states, inputs, and outputs. See “The Size of LTI Array Data for SS
Models.”

Nx • Scalar integer representing the number of states for single LTI models or
LTI arrays with the same number of states in each model

• -by- -by- -dimensional array of integers when all of the models of
an LTI array do not have the same number of states
S1 … SK

Table 1-4: TF Model Properties

Property Name Admissible Property Values

num, den • Real- or complex-valued row vectors for the coefficients of the numerator or
denominator polynomials in the SISO case. List the coefficients in
descending powers of the variable or by default, and in ascending
powers of when the Variable property is set to 'q' or 'z^-1' (see
note below).

• -by- cell arrays of real- or complex-valued row vectors in the MIMO
case, for example,
{[1 2];[1 0 3]} for a two-output/one-input transfer function

• -by- -by- -by- -by- -dimensional real- or complex-valued cell
arrays for MIMO LTI arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

s z
q z 1–

=

Ny Nu

Ny Nu S1 … SK

set

1-234

Remark For discrete-time transfer functions, the convention used to represent the
numerator and denominator depends on the choice of variable (see the tf entry
for details). Like tf, the syntax for set changes to remain consistent with the
choice of variable. For example, if the Variable property is set to 'z' (the
default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

Table 1-5: ZPK Model Properties

Property Name Admissible Property Values

z, p • Vectors of zeros and poles (either real- or complex-valued) in SISO case

• -by- cell arrays of vectors (entries are real- or complex valued) in
MIMO case, for example, z = {[],[-1 0]} for a model with two inputs and
one output

• -by- -by- -by- -by- -dimensional cell arrays for MIMO LTI
arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

Ny Nu

Ny Nu S1 … SK

Table 1-6: FRD Model Properties

Property Name Admissible Property Values

Frequency Real-valued vector of length -by-1, where is the number of
frequencies

Response • -by- -by- -dimensional array of complex data for single LTI models

• -by- -by- -by- -by- -by- -dimensional array for LTI arrays

Units String 'rad/s' (default), or 'Hz'

Nf Nf

Ny Nu Nf

Ny Nu Nf S1 … SK

set

1-235

However, if you change the Variable to 'z^-1' (or 'q') by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials
and and produces:

Note Because the resulting transfer functions are different, make sure to use
the convention consistent with your choice of variable.

See Also get Access/query LTI model properties
frd Specify a frequency response data model
ss Specify a state-space model
tf Specify a transfer function
zpk Specify a zero-pole-gain model

h z() z 2+
z2 3z 4+ +
----------------------------=

1 2z 1–
+

1 3z 1– 4z 2–
+ +

h z 1–() 1 2z 1–
+

1 3z 1– 4z 2–
+ +

-- zh z()= =

setoptions

1-236

1setoptionsPurpose Set plot options for response plots

Syntax setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)

Description setoptions(h, PlotOpts) sets preferences for response plot using the plot
handle. h is the plot handle, PlotOpts is a plot options handle containing
information about plot options.

There are two ways to create a plot options handle:

• Use getoptions, which accepts a plot handle and returns a plot options
handle.
p = getoptions(h)

• Create a default plot options handle using one of the following commands:

- bodeoptions — Bode plots

- hsvoptions — Hankel singular values plots

- nicholsoptions — Nichols plots

- nyquistoptions — Nyquist plots

- pzoptions — Pole/zero plots

- sigmaoptions — Sigma plots

- timeoptions — Time plots (step, initial, impulse, etc.)

For example,

p = bodeoptions

returns a plot options handle for Bode plots.

setoptions(h, 'Property1', 'value1', ...) assigns values to property
pairs instead of using PlotOpts. To find out what properties and values are
available, type help <function>options. For example, for Bode plots type

help bodeoptions

setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot
properties as defined in @PlotOptions, and then overrides any properties
governed by the specified property/value pairs.

setoptions

1-237

Examples To change frequency units, first create a Bode plot.

sys=tf(1,[1 1]);
h-bodeplot(sys) % Create a Bode plot with plot handle h.

Now, change the frequency units from rad/s to Hz.

p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.

setoptions

1-238

setoptions(h,p); % Apply plot options to the Bode plot and
% render.

To change the frequency units using property/value pairs, use this code.

sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');

The result is the same as the first example.

See Also getoptions Get a plot options handle

The frequency units
are now Hz.

sgrid

1-239

1sgridPurpose Generate an s-plane grid of constant damping factors and natural frequencies

Syntax sgrid
sgrid(z,wn)

Description sgrid generates, for pole-zero and root locus plots, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to 10
rad/sec in steps of one rad/sec, and plots the grid over the current axis. If the
current axis contains a continuous s-plane root locus diagram or pole-zero map,
sgrid draws the grid over the plot.

sgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and natural frequencies in the vectors z and wn,
respectively. If the current axis contains a continuous s-plane root locus
diagram or pole-zero map, sgrid(z,wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the
same s-plane grid.

Example Plot s-plane grid lines on the root locus for the following system.

You can do this by typing

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1

 s^2 + 2 s + 3

rlocus(H)
sgrid

H s() 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

sgrid

1-240

See Also pzmap Plot pole-zero map
rlocus Plot root locus
zgrid Generate z-plane grid lines

sigma

1-241

1sigmaPurpose Singular values of the frequency response of LTI models

Syntax sigma(sys)
sigma(sys,w)
sigma(sys,w,type)

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,w)
sigma(sys1,sys2,...,sysN,w,type)
sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[sv,w] = sigma(sys)
sv = sigma(sys,w)

Description sigma calculates the singular values of the frequency response of an LTI model.
For an FRD model, sys, sigma computes the singular values of sys.Response
at the frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models
with transfer function , sigma computes the singular values of as
a function of the frequency . For discrete-time TF, SS, or ZPK models with
transfer function and sample time , sigma computes the singular
values of

for frequencies between 0 and the Nyquist frequency .

The singular values of the frequency response extend the Bode magnitude
response for MIMO systems and are useful in robustness analysis. The
singular value response of a SISO system is identical to its Bode magnitude
response. When invoked without output arguments, sigma produces a singular
value plot on the screen.

sigma(sys) plots the singular values of the frequency response of an arbitrary
LTI model sys. This model can be continuous or discrete, and SISO or MIMO.
The frequency points are chosen automatically based on the system poles and
zeros, or from sys.frequency if sys is an FRD.

sigma(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set

H s() H jω()
ω

H z() Ts

H e
jωTs()

ω ωN π Ts⁄=

sigma

1-242

w = {wmin,wmax}. To use particular frequency points, set w to the
corresponding vector of frequencies. Use logspace to generate logarithmically
spaced frequency vectors. The frequencies must be specified in rad/sec.

sigma(sys,[],type) or sigma(sys,w,type) plots the following modified
singular value responses:

These options are available only for square systems, that is, with the same
number of inputs and outputs.

To superimpose the singular value plots of several LTI models on a single
figure, use

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,[],type) % modified SV plot
sigma(sys1,sys2,...,sysN,w) % specify frequency range/grid

The models sys1,sys2,...,sysN need not have the same number of inputs
and outputs. Each model can be either continuous- or discrete-time. You can
also specify a distinctive color, linestyle, and/or marker for each system plot
with the syntax

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with output arguments,

[sv,w] = sigma(sys)
sv = sigma(sys,w)

return the singular values sv of the frequency response at the frequencies w.
For a system with Nu input and Ny outputs, the array sv has min(Nu,Ny) rows
and as many columns as frequency points (length of w). The singular values at
the frequency w(k) are given by sv(:,k).

Example Plot the singular value responses of

type = 1 Singular values of the frequency response , where is
the frequency response of sys.

type = 2 Singular values of the frequency response .

type = 3 Singular values of the frequency response .

H 1– H

I H+

I H 1–
+

sigma

1-243

and .

You can do this by typing

H = [0 tf([3 0],[1 1 10]) ; tf([1 1],[1 5]) tf(2,[1 6])]

subplot(211)
sigma(H)
subplot(212)
sigma(H,[],2)

H s()
0 3s

s2 s 10+ +

s 1+
s 5+
------------ 2

s 6+

=

I H s()+

Frequency (rad/sec)

S
in

gu
la

r V
al

ue
s

(d
B

)

Singular Values

10
−2

10
−1

10
0

10
1

10
2

−60

−40

−20

0

20

Frequency (rad/sec)

S
in

gu
la

r V
al

ue
s

(d
B

)

Singular Values

10
−2

10
−1

10
0

10
1

10
2

−40

−30

−20

−10

0

10

20

sigma

1-244

Algorithm sigma uses the svd function in MATLAB to compute the singular values of a
complex matrix.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot

sigmaplot

1-245

1sigmaplotPurpose Plot singular values of the frequency response and return the plot handle

Syntax h = sigmaplot(sys)

h = sigmaplot(sys,{wmin,wmax})
h = sigmaplot(sys,w)
h = sigmaplot(sys,w,type)
h = sigmaplot(sys,[],type)
h = sigmaplot(AX,...)
h = sigmaplot(..., plotoptions)

Discussion h = sigmaplot(sys) produces a singular value (SV) plot of the frequency
response of the LTI model sys (created with tf, zpk, ss, or frd). It also returns
the plot handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help nicholsoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically. See bode
for details on the notion of frequency in discrete time.

sigmaplot(sys,{wmin,wmax}) draws the SV plot for frequencies ranging
between wmin and wmax (in rad/s).

sigmaplot(sys,w) uses the user-supplied vector w of frequencies, in rad/s, at
which the frequency response is to be evaluated. See logspace to generate
logarithmically spaced frequency vectors.

sigmaplot(sys,w,TYPE) or sigmaplot(sys,[],TYPE) draws the following
modified SV plots depending on the value of TYPE:

 TYPE = 1 --> SV of inv(SYS)

 TYPE = 2 --> SV of I + SYS

 TYPE = 3 --> SV of I + inv(SYS)

sys should be a square system when using this syntax.

sigmaplot(AX,...) plots into the axes with handle AX.

sigmaplot

1-246

sigmaplot(..., plotoptions) plots the singular values with the options
specified in plotoptions. Type

help sigmaoptions

for more details.

Example Use the plot handle to change the units to Hz.

sys = rss(5);
h = sigmaplot(sys);
% Change units to Hz.
setoptions(h,'FreqUnits','Hz');

See Also getoptions Get plot options
setoptions Set plot options
sigma Singular value plot of LTI models

sisotool

1-247

1sisotoolPurpose Initialize the SISO Design Tool

Syntax sisotool
sisotool(plant)
sisotool(plant,comp)
sisotool(views)
sisotool(views,plant,comp,sensor,prefilt)
sisotool(views,plant,comp,options)

Description When invoked without input arguments, sisotool opens a SISO Design GUI
for interactive compensator design. This GUI allows you to design a
single-input/single-output (SISO) compensator using root locus and Bode
diagram techniques.

By default, the SISO Design Tool:

• Opens root locus and open-loop Bode diagrams.

• Places the compensator, C, in the forward path in series with the plant, G.

• Assumes the prefilter, F, and the sensor, H, are unity gains. Once you specify
G and H, they are fixed in the feedback structure.

sisotool

1-248

This picture shows the SISO Design Tool.

sisotool(plant) opens the SISO Design Tool, imports plant, and initializes
the plant model G to plant. The workspace variable plant can be any SISO
LTI model created with either ss, tf, or zpk.

sisotool(plant,comp) initializes the plant model G to plant, the
compensator C to comp.

sisotool(plant,comp,sensor,prefilt) initializes the plant G to plant,
compensator C to comp, sensor H to sensor, and the prefilter F to prefilt. All
arguments must be SISO LTI objects.

sisotool(views) or sisotool(views,plant,comp) specifies the initial
configuration of the SISO Design Tool. The argument views can be any of the
following strings (or combination thereof):

Compensator
description: The default
compensator is V=1.

Use the right-click menu to
manipulate the
compensator and the
plots’ appearances.
Right-click in any plot
region to open the menu.

The status bar provides
useful information.

Use the menu bar to import/export models, and to
edit them. Right-click menu functionality is available
under the Edit menu.

The feedback structure: Click on FS to change the feedback
structure. Click on +/- to change the feedback sign.

sisotool

1-249

• 'rlocus' — Root Locus plot

• 'bode' — Bode diagrams of the open-loop response

• 'nichols' — Nichols plot

• 'filter' — Bode diagrams of the prefilter F and the closed-loop response
from the command into F to the output of the compensator G (see the
feedback structure figure below)

For example

 sisotool('bode')

opens a SISO Design Tool with only the Bode Diagrams on.

sisotool(plant,comp,options) allows you to override the default
compensator location and feedback sign by using an extra input argument
options with the following fields:

• options.Location = 'forward' — Compensator in the forward loop

• options.Location = 'feedback' — Compensator in the feedback loop

• options.Sign = −1 — Negative feedback

• options.Sign = 1 — Positive feedback

You can design compensators for one of the following two feedback loop
configurations.

The SISO Design Tool Supports Two Feedback Structures.

For more details on the SISO Design Tool, see “Designing Compensators” in
the Getting Started documentation for the Control System Toolbox.

See Also bode Bode response
ltiview Open an LTI Viewer

Compensator in the Compensator in the
Feedback PathForward Path

sisotool

1-250

rlocus Root locus
nichols Nichols response

size

1-251

1sizePurpose Provide the output/input/array dimensions of LTI models, the model order of
TF, SS, and ZPK models, and the number of frequencies of FRD models

Syntax size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Ns = size(sys,'order')
Nf = size(sys,'frequency')

Description When invoked without output arguments, size(sys) returns a vector of the
number of outputs and inputs for a single LTI model. The lengths of the array
dimensions are also included in the response to size when sys is an LTI array.
size is the overloaded version of the MATLAB function size for LTI objects.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single LTI model sys with Ny outputs and
Nu inputs

• The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array
of LTI models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys
is an LTI array.

Ns = size(sys,'order') returns the model order of a TF, SS, or ZPK model. This
is the same as the number of states for state-space models. When sys is an LTI
array, ns is the maximum order of all of the models in the LTI array.

Nf = size(sys,'frequency') returns the number of frequencies when sys is
an FRD. This is the same as the length of sys.frequency.

Example Consider the random LTI array of state-space models

sys = rss(5,3,2,3);

Its dimensions are obtained by typing

size

1-252

size(sys)

3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

See Also isempty Test if LTI model is empty
issiso Test if LTI model is SISO
ndims Number of dimensions of an LTI array

sminreal

1-253

1sminrealPurpose Perform model reduction based on structure

Syntax msys = sminreal(sys)

Description msys = sminreal(sys) eliminates the states of the state-space model sys that
don’t affect the input/output response. All of the states of the resulting
state-space model msys are also states of sys and the input/output response of
msys is equivalent to that of sys.

sminreal eliminates only structurally non minimal states, i.e., states that can
be discarded by looking only at hard zero entries in the A, B, and C matrices.
Such structurally nonminimal states arise, for example, when linearizing a
Simulink model that includes some unconnected state-space or transfer
function blocks.

Remark The model resulting from sminreal(sys) is not necessarily minimal, and may
have a higher order than one resulting from minreal(sys). However,
sminreal(sys) retains the state structure of sys, while, in general,
minreal(sys) does not.

Example Suppose you concatenate two SS models, sys1 and sys2.

sys = [sys1,sys2];

This operation is depicted in the diagram below.

If you extract the subsystem sys1 from sys, with

sys(1,1)

+ y

u

v

sys1

sys2

sminreal

1-254

all of the states of sys, including those of sys2 are retained. To eliminate the
unobservable states from sys2, while retaining the states of sys1, type

sminreal(sys(1,1))

See Also minreal Model reduction by removing
unobservable/uncontrollable states or cancelling
pole/zero pairs

ss

1-255

1ssPurpose Specify state-space models or convert an LTI model to state space

Syntax sys = ss(a,b,c,d)
sys = ss(a,b,c,d,Ts)
sys = ss(d)
sys = ss(a,b,c,d,ltisys)

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)
sys = ss(a,b,c,d,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys_ss = ss(sys)
sys_ss = ss(sys,'minimal')

Description ss is used to create real- or complex-valued state-space models (SS objects) or
to convert transfer function or zero-pole-gain models to state space.

Creation of State-Space Models

sys = ss(a,b,c,d) creates the continuous-time state-space model

For a model with Nx states, Ny outputs, and Nu inputs:

• a is an Nx-by-Nx real- or complex-valued matrix.

• b is an Nx-by-Nu real- or complex-valued matrix.

• c is an Ny-by-Nx real- or complex-valued matrix.

• d is an Ny-by-Nu real- or complex-valued matrix.

The output sys is an SS model that stores the model data (see “State-Space
Models” on page 2-14). If , you can simply set d to the scalar 0 (zero),
regardless of the dimension.

sys = ss(a,b,c,d,Ts) creates the discrete-time model

x· Ax Bu+=

y Cx Du+=

D 0=

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

ss

1-256

with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample
time unspecified.

sys = ss(d) specifies a static gain matrix and is equivalent to

sys = ss([],[],[],d)

sys = ss(a,b,c,d,ltisys) creates a state-space model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

See “Building LTI Arrays” on page 4-12 for information on how to build arrays
of state-space models.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See the set entry and the
example below for details. Note that

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)

is equivalent to the sequence of commands.

sys = ss(a,b,c,d)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Conversion to State Space

sys_ss = ss(sys) converts an arbitrary TF or ZPK model sys to state space.
The output sys_ss is an equivalent state-space model (SS object). This
operation is known as state-space realization.

sys_ss = ss(sys,'minimal') produces a state-space realization with no
uncontrollable or unobservable states. This is equivalent to sys_ss =
minreal(ss(sys)).

Algorithm In the case of TF to SS model conversion, ss(sys_tf) returns a modified
version of the controllable canonical form. It uses an algorithm similar to

D

ss

1-257

tf2ss, but further rescales the state vector to compress the numerical range in
state matrix A and to improve numerics in subsequent computations.

In the case of ZPK to SS conversion, ss(sys_zpk) uses direct form II structures
as defined in signal processing texts. See “Discrete-Time Signal Processing” by
Oppenheim and Schafer for details.

For example, in the following code, A and sys.a differ by a diagonal state
transformation:

n=[1 1];
d=[1 1 10];
[A,B,C,D]=tf2ss(n,d);
sys=ss(tf(n,d));
A

A =

 -1 -10
 1 0

sys.a

ans =
 -1 -5

 2 0

See the balance or ssbal documentation for details.

Examples Example 1
The command

sys = ss(A,B,C,D,0.05,'statename',{'position' 'velocity'},...
'inputname','force',...
'notes','Created 10/15/96')

creates a discrete-time model with matrices and sample time 0.05
second. This model has two states labeled position and velocity, and one
input labeled force (the dimensions of should be consistent with
these numbers of states and inputs). Finally, a note is attached with the date
of creation of the model.

A B C D, , ,

A B C D, , ,

ss

1-258

Example 2
Compute a state-space realization of the transfer function

by typing

H = [tf([1 1],[1 3 3 2]) ; tf([1 0 3],[1 1 1])];
sys = ss(H);
size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

Note that the number of states is equal to the cumulative order of the SISO
entries of H(s).

To obtain a minimal realization of H(s), type

sys = ss(H,'min');
size(sys)

State-space model with 2 outputs, 1 input, and 3 states.

The resulting state-space model order has order three, the minimum number
of states needed to represent H(s). This can be seen directly by factoring H(s)
as the product of a first order system with a second order one.

See Also dss Specify descriptor state-space models.
frd Specify FRD models or convert to an FRD.
get Get properties of LTI models.
set Set properties of LTI models.

H s()

s 1+

s3 3s2 3s 2+ + +

s2 3+

s2 s 1+ +

=

H s()
1

s 2+
------------ 0

0 1

s 1+

s2 s 1+ +

s2 3+

s2 s 1+ +

=

ss

1-259

ssdata Retrieve the matrices of state-space model.
tf Specify transfer functions or convert to TF.
zpk Specify zero-pole-gain models or convert to ZPK.

A B C D, , ,

ss2ss

1-260

1ss2ssPurpose State coordinate transformation for state-space models

Syntax sysT = ss2ss(sys,T)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), ss2ss performs the similarity
transformation on the state vector and produces the equivalent
state-space model sysT with equations.

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given
sys and the state coordinate transformation T. The model sys must be in
state-space form and the matrix T must be invertible. ss2ss is applicable to
both continuous- and discrete-time models.

Example Perform a similarity transform to improve the conditioning of the matrix.

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See ssbal for a more direct approach.

See Also balreal Grammian-based I/O balancing
canon Canonical state-space realizations
ssbal Balancing of state-space models using diagonal

similarity transformations

x· Ax Bu+=

y Cx Du+=

x Tx= x

x· TAT 1– x TBu+=

y CT 1– x Du+=

A

ssbal

1-261

1ssbalPurpose Balance state-space models using a diagonal similarity transformation

Syntax [sysb,T] = ssbal(sys)
[sysb,T] = ssbal(sys,condT)

Description Given a state-space model sys with matrices ,

[sysb,T] = ssbal(sys)

computes a diagonal similarity transformation and a scalar such that

has approximately equal row and column norms. ssbal returns the balanced
model sysb with matrices

and the state transformation where is the new state.

[sysb,T] = ssbal(sys,condT) specifies an upper bound condT on the
condition number of . Since balancing with ill-conditioned can
inadvertently magnify rounding errors, condT gives control over the worst-case
roundoff amplification factor. The default value is condT=Inf.

ssbal returns an error if the state-space model sys has varying state
dimensions.

Example Consider the continuous-time state-space model with the following data.

a = [1 1e4 1e2;0 1e2 1e5;10 1 0];
b = [1;1;1];
c = [0.1 10 1e2];
sys = ss(a,b,c,0)

A B C D, , ,()

T α

TAT 1– TB α⁄

αCT 1– 0

TAT 1– TB α⁄ αCT 1– D,, ,()

x Tx= x

T T

A
1 104 102

0 102 105

10 1 0

 ,= B
1
1
1

 ,= C 0.1 10 100=

ssbal

1-262

Balance this model with ssbal by typing

ssbal(sys)

a =
 x1 x2 x3
 x1 1 2500 0.39063
 x2 0 100 1562.5
 x3 2560 64 0

b =
 u1
 x1 0.125
 x2 0.5
 x3 32

c =
 x1 x2 x3
 y1 0.8 20 3.125

d =
 u1
 y1 0

Continuous-time system.

Direct inspection shows that the range of numerical values has been
compressed by a factor 100 and that the and matrices now have nearly
equal norms.

Algorithm ssbal uses the MATLAB function balance to compute and .

See Also balreal Grammian-based I/O balancing
ss2ss State coordinate transformation

B C

T α

ssdata

1-263

1ssdataPurpose Quick access to state-space model data

Syntax [a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description [a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array)
data from the state-space model (LTI array) sys. If sys is a
transfer function or zero-pole-gain model (LTI array), it is first converted to
state space. See Table 11-16, “State-Space Model Properties,” on page 11-195
for more information on the format of state-space model data.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.statename

 For arrays of state-space models with variable numbers of states, use the
syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell
arrays a, b, c, and d.

See Also dssdata Quick access to descriptor state-space data
get Get properties of LTI models
set Set model properties
ss Specify state-space models
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D, , ,()

stabsep

1-264

1stabsepPurpose Stable/unstable decomposition of LTI models

Syntax [GS,GNS] = stabsep(G,CONDMAX)
[G1,G2] = STABSEP(G,CONDMAX,MODE,TOL)

Description stapsep decomposes the LTI model into its stable and unstable parts

 G = GS + GNS

where GS contains all stable modes that can be separated from the unstable
modes in a numerically stable way, and GNS contains the remaining modes. GNS
is always strictly proper.

Use the optional input CONDMAX to control the condition number of the
decoupling state transformation. Increasing CONDMAX helps separate close by
stable and unstable modes at the expense of accuracy (see BDSCHUR for more
details). By default CONDMAX=1e8.

[G1,G2] = STABSEP(G,CONDMAX,MODE,TOL) performs more general
stable/unstable decompositions such that G1 includes all separable
eigenvalues lying in one the following regions:

The default values are MODE=1 and TOL=0.

See Also modsep Region-based modal decomposition

Table 1-7:

Mode Continuous Time Discrete Time

1 Re(s)<-TOL*max(1,|Im(s)|) 1 |z| < 1-TOL

2 Re(s)> TOL*max(1,|Im(s)|) 2 |z| > 1+TOL

stack

1-265

1stackPurpose Build an LTI array by stacking LTI models or LTI arrays along array
dimensions of an LTI array

Syntax sys = stack(arraydim,sys1,sys2,...)

Description sys = stack(arraydim,sys1,sys2,...) produces an array of LTI models sys
by stacking (concatenating) the LTI models (or LTI arrays) sys1,sys2,...
along the array dimension arraydim. All models must have the same number
of inputs and outputs (the same I/O dimensions), but the number of states can
vary. The I/O dimensions are not counted in the array dimensions. See
“Dimensions, Size, and Shape of an LTI Array” and “Building LTI Arrays
Using the stack Function” for more information.

For arrays of state-space models with variable order, you cannot use the dot
operator (e.g., sys.a) to access arrays. Use the syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell
arrays a, b, c, and d.

Example If sys1 and sys2 are two LTI models:

• stack(1,sys1,sys2) produces a 2-by-1 LTI array.

• stack(2,sys1,sys2) produces a 1-by-2 LTI array.

• stack(3,sys1,sys2) produces a 1-by-1-by-2 LTI array.

step

1-266

1stepPurpose Step response of LTI systems

Syntax step(sys)
step(sys,t)

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)
step(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = step(sys)

Description step calculates the unit step response of a linear system. Zero initial state is
assumed in the state-space case. When invoked with no output arguments, this
function plots the step response on the screen.

step(sys) plots the step response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. The step response of
multi-input systems is the collection of step responses for each input channel.
The duration of simulation is determined automatically based on the system
poles and zeros.

step(sys,t) sets the simulation horizon explicitly. You can specify either a
final time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the step responses of several LTI models sys1,..., sysN on a single
figure, use

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)

step

1-267

All systems must have the same number of inputs and outputs but may
otherwise be a mix of continuous- and discrete-time systems. This syntax is
useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, and/or marker for each
system. For example,

step(sys1,'y:',sys2,'g--')

plots the step response of sys1 with a dotted yellow line and the step response
of sys2 with a green dashed line.

When invoked with output arguments,

[y,t] = step(sys)
[y,t,x] = step(sys) % for state-space models only
y = step(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the step
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

and y(:,:,j) gives the response to a unit step command injected in the jth
input channel. Similarly, the dimensions of x are

Example Plot the step response of the following second-order state-space model.

length of t() number of outputs() number of inputs()××

length of t() number of states() number of inputs()××

x·1

x·2

0.5572 – 0.7814–

0.7814 0

x1

x2

1 1–

0 2

u1

u2

+=

y 1.9691 6.4493
x1

x2

=

step

1-268

a = [-0.5572 -0.7814;0.7814 0];
b = [1 -1;0 2];
c = [1.9691 6.4493];
sys = ss(a,b,c,0);
step(sys)

The left plot shows the step response of the first input channel, and the right
plot shows the step response of the second input channel.

Algorithm Continuous-time models are converted to state space and discretized using
zero-order hold on the inputs. The sampling period is chosen automatically
based on the system dynamics, except when a time vector t = 0:dt:Tf is
supplied (dt is then used as sampling period).

See Also impulse Impulse response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer

stepplot

1-269

1stepplotPurpose Plot the step response of LTI systems and return the plot handle

Syntax h = stepplot(sys)

h = stepplot(sys,Tfinal)
h = stepplot(sys,t)
h = stepplot(sys1,sys2,...,t)
h = stepplot(AX,...)
h = stepplot(..., plotoptions)

Description h = stepplot(sys) plots the step response of the LTI model sys (created with
either tf, zpk, or ss). It also returns the plot handle h. You can use this handle
to customize the plot with the getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

For multiinput models, independent step commands are applied to each input
channel. The time range and number of points are chosen automatically.

stepplot(sys,Tfinal) simulates the step response from t=0 to the final time
t=Tfinal. For discrete-time models with unspecified sampling time, Tfinal is
interpreted as the number of samples.

stepplot(sys,t) uses the user-supplied time vector t for simulation. For
discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample
time. For continuous-time models, t should be of the form Ti:dt:Tf, where dt
becomes the sample time for the discrete approximation to the continuous
system. The step input is always assumed to start at t=0 (regardless of Ti).

stepplot(sys1,sys2,...,t) plots the step responses of multiple LTI models
sys1,sys2,... on a single plot. The time vector t is optional. You can also specify
a color, line style, and marker for each system, as in

stepplot(sys1,'r',sys2,'y--',sys3,'gx')

stepplot(AX,...) plots into the axes with handle AX.

stepplot(..., plotoptions) plots the step response with the options
specified in plotoptions. Type

help timeoptions

stepplot

1-270

for more details.

Example Use the plot handle to normalize the responses on a step plot.

sys = rss(3);
h = stepplot(sys,[1,1,1]);
% Normalize responses.
setoptions(h,'Normalize','on');

See Also getoptions Get plot options
setoptions Set plot options
step Plot step responses of LTI systems

tf

1-271

1tfPurpose Specify transfer functions or convert LTI model to transfer function form

Syntax sys = tf(num,den)
sys = tf(num,den,Ts)
sys = tf(M)
sys = tf(num,den,ltisys)

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = tf(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = tf('s')
sys = tf('z')

tfsys = tf(sys)
tfsys = tf(sys,'inv') % for state-space sys only

Description tf is used to create real- or complex-valued transfer function models (TF
objects) or to convert state-space or zero-pole-gain models to transfer function
form.

Creation of Transfer Functions

sys = tf(num,den) creates a continuous-time transfer function with
numerator(s) and denominator(s) specified by num and den. The output sys is a
TF object storing the transfer function data (see “Transfer Function Models” on
page 2-8).

In the SISO case, num and den are the real- or complex-valued row vectors of
numerator and denominator coefficients ordered in descending powers of .
These two vectors need not have equal length and the transfer function need
not be proper. For example, h = tf([1 0],1) specifies the pure derivative

.

To create MIMO transfer functions, specify the numerator and denominator of
each SISO entry. In this case:

• num and den are cell arrays of row vectors with as many rows as outputs and
as many columns as inputs.

s

h s() s=

tf

1-272

• The row vectors num{i,j} and den{i,j} specify the numerator and
denominator of the transfer function from input j to output i (with the SISO
convention).

If all SISO entries of a MIMO transfer function have the same denominator,
you can set den to the row vector representation of this common denominator.
See “Examples” for more details.

sys = tf(num,den,Ts) creates a discrete-time transfer function with sample
time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time
unspecified. The input arguments num and den are as in the continuous-time
case and must list the numerator and denominator coefficients in descending
powers of .

sys = tf(M) creates a static gain M (scalar or matrix).

sys = tf(num,den,ltisys) creates a transfer function with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

There are several ways to create LTI arrays of transfer functions. To create
arrays of SISO or MIMO TF models, either specify the numerator and
denominator of each SISO entry using multidimensional cell arrays, or use a
for loop to successively assign each TF model in the array. See “Building LTI
Arrays” on page 4-12 for more information.

Any of the previous syntaxes can be followed by property name/property value
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See set entry and the example
below for details. Note that

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for

sys = tf(num,den)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

z

tf

1-273

Transfer Functions as Rational Expressions in s or z
You can also use real- or complex-valued rational expressions to create a TF
model. To do so, first type either:

• s = tf('s') to specify a TF model using a rational function in the Laplace
variable, s.

• z = tf('z',Ts) to specify a TF model with sample time Ts using a rational
function in the discrete-time variable, z.

Once you specify either of these variables, you can specify TF models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Transfer Function

tfsys = tf(sys) converts an arbitrary SS or ZPK LTI model sys to transfer
function form. The output tfsys (TF object) is the transfer function of sys. By
default, tf uses zero to compute the numerators when converting a state-space
model to transfer function form. Alternatively,

tfsys = tf(sys,'inv')

uses inversion formulas for state-space models to derive the numerators. This
algorithm is faster but less accurate for high-order models with low gain at

.

Examples Example 1
Create the two-output/one-input transfer function

with input current and outputs torque and ang velocity.

To do this, type

num = {[1 1] ; 1}
den = {[1 2 2] ; [1 0]}

s 0=

H p()

p 1+

p2 2p 2+ +

1
p

=

tf

1-274

H = tf(num,den,'inputn','current',...
'outputn',{'torque' 'ang. velocity'},...

 'variable','p')

Transfer function from input "current" to output...
 p + 1
 torque: -------------
 p^2 + 2 p + 2

 1
 ang. velocity: -
 p

Note how setting the 'variable' property to 'p' causes the result to be
displayed as a transfer function of the variable .

Example 2
To use a rational expression to create a SISO TF model, type

s = tf('s');
H = s/(s^2 + 2*s +10);

This produces the same transfer function as

h = tf([1 0],[1 2 10]);

Example 3
Specify the discrete MIMO transfer function

with common denominator and sample time of 0.2 seconds.

nums = {1 [1 0];[-1 2] 3}
Ts = 0.2
H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)

p

H z()

1
z 0.3+
----------------- z

z 0.3+

z– 2+
z 0.3+
----------------- 3

z 0.3+

=

d z() z 0.3+=

tf

1-275

Example 4
Compute the transfer function of the state-space model with the following data.

To do this, type

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 0],[0 1])
tf(sys)

Transfer function from input 1 to output:
 s

s^2 + 4 s + 5

Transfer function from input 2 to output:
s^2 + 5 s + 8

s^2 + 4 s + 5

Example 5

You can use a for loop to specify a 10-by-1 array of SISO TF models.

s = tf('s')
H = tf(zeros(1,1,10));

for k=1:10,
H(:,:,k) = k/(s^2+s+k);

end

The first statement pre-allocates the TF array and fills it with zero transfer
functions.

Discrete-Time
Conventions

The control and digital signal processing (DSP) communities tend to use
different conventions to specify discrete transfer functions. Most control
engineers use the variable and order the numerator and denominator terms
in descending powers of , for example,

A 2– 1–

1 2–
 ,= B 1 1

2 1–
 ,= C 1 0 ,= D 0 1=

z
z

h z() z2

z2 2z 3+ +
----------------------------=

tf

1-276

The polynomials and are then specified by the row vectors
[1 0 0] and [1 2 3], respectively. By contrast, DSP engineers prefer to write
this transfer function as

and specify its numerator as 1 (instead of [1 0 0]) and its denominator as
[1 2 3].

tf switches convention based on your choice of variable (value of the
'Variable' property).

For example,

g = tf([1 1],[1 2 3],0.1)

specifies the discrete transfer function

because is the default variable. In contrast,

h = tf([1 1],[1 2 3],0.1,'variable','z^-1')

uses the DSP convention and creates

Variable Convention

'z' (default) Use the row vector [ak ... a1 a0] to specify the
polynomial (coefficients ordered in
descending powers of).

'z^-1', 'q' Use the row vector [b0 b1 ... bk] to specify the
polynomial (coefficients in
ascending powers of or).

z2 z2 2z 3+ +

h z 1–() 1

1 2z 1– 3z 2–
+ +

--=

akzk ... a1z a0+ + +
z

b0 b1z 1– ... bkz k–
+ + +

z 1– q

g z() z 1+

z2 2z 3+ +
----------------------------=

z

h z 1–() 1 z 1–
+

1 2z 1– 3z 2–
+ +

-- zg z()= =

tf

1-277

See also filt for direct specification of discrete transfer functions using the
DSP convention.

Note that tf stores data so that the numerator and denominator lengths are
made equal. Specifically, tf stores the values

num = [0 1 1]; den = [1 2 3]

for g (the numerator is padded with zeros on the left) and the values

num = [1 1 0]; den = [1 2 3]

for h (the numerator is padded with zeros on the right).

Algorithm tf uses the MATLAB function poly to convert zero-pole-gain models, and the
functions zero and pole to convert state-space models.

See Also filt Specify discrete transfer functions in DSP format
frd Specify a frequency response data model
get Get properties of LTI models
set Set properties of LTI models
ss Specify state-space models or convert to state space
tfdata Retrieve transfer function data
zpk Specify zero-pole-gain models or convert to ZPK

tfdata

1-278

1tfdataPurpose Quick access to transfer function data

Syntax [num,den] = tfdata(sys)
[num,den] = tfdata(sys,'v')
[num,den,Ts] = tfdata(sys)

Description [num,den] = tfdata(sys) returns the numerator(s) and denominator(s) of
the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or
ZPK models) sys. For single LTI models, the outputs num and den of tfdata are
cell arrays with the following characteristics:

• num and den have as many rows as outputs and as many columns as inputs.

• The (i,j) entries num{i,j} and den{i,j} are row vectors specifying the
numerator and denominator coefficients of the transfer function from input
j to output i. These coefficients are ordered in descending powers of or .

For arrays sys of LTI models, num and den are multidimensional cell arrays
with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer
function form using tf. See Table 11-15, “LTI Properties,” on page 11-194 for
more information on the format of transfer function model data.

For SISO transfer functions, the syntax

[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row vectors
rather than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.variable

Example Given the SISO transfer function

h = tf([1 1],[1 2 5])

s z

tfdata

1-279

you can extract the numerator and denominator coefficients by typing

[num,den] = tfdata(h,'v')

num =
 0 1 1

den =
 1 2 5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing

H = [h ; tf(1,[1 1])]

the command

[num,den] = tfdata(H)

now returns two cell arrays with the numerator/denominator data for each
SISO entry. Use celldisp to visualize this data. Type

celldisp(num)

and MATLAB returns the numerator vectors of the entries of H.

num{1} =
 0 1 1

num{2} =
 0 1

Similarly, for the denominators, type

celldisp(den)

den{1} =
 1 2 5

den{2} =
 1 1

See Also get Get properties of LTI models
ssdata Quick access to state-space data

tfdata

1-280

tf Specify transfer functions
zpkdata Quick access to zero-pole-gain data

totaldelay

1-281

1totaldelayPurpose Return the total combined I/O delays for an LTI model

Syntax td = totaldelay(sys)

Description td = totaldelay(sys) returns the total combined I/O delays for an LTI model
sys. The matrix td combines contributions from the InputDelay, OutputDelay,
and ioDelay properties, (see set on page 11-192 or type ltiprops for details on
these properties).

Delays are expressed in seconds for continuous-time models, and as integer
multiples of the sample period for discrete-time models. To obtain the delay
times in seconds, multiply td by the sample time sys.Ts.

Example sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2; % 2 sec input delay
sys.outputd = 1.5; % 1.5 sec output delay
td = totaldelay(sys)

td =
 3.5000

The resulting I/O map is

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model
sys.

See Also delay2z Change transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

hasdelay True for LTI models with delays

e 2s– 1
s
---e 1.5s–× e 3.5s– 1

s
---=

zero

1-282

1zeroPurpose Transmission zeros of LTI models

Syntax z = zero(sys)
[z,gain] = zero(sys)

Description zero computes the zeros of SISO systems and the transmission zeros of MIMO
systems. For a MIMO system with matrices , the transmission
zeros are the complex values for which the normal rank of

drops.

z = zero(sys) returns the (transmission) zeros of the LTI model sys as a
column vector.

[z,gain] = zero(sys) also returns the gain (in the zero-pole-gain sense) if
sys is a SISO system.

Algorithm zero is based on SLICOT routine AB08NX. Also use LAPACK routines DGEEV
and DGEGV (and their complex counterparts) for eigenvalue computation.

The transmission zeros are computed using the algorithm in [1].

References [1] Emami-Naeini, A. and P. Van Dooren, “Computation of Zeros of Linear
Multivariable Systems,” Automatica, 18 (1982), pp. 415–430.

See Also pole Compute the poles of an LTI model
pzmap Compute the pole-zero map

A B C D, , ,()
λ

A λI– B
C D

zgrid

1-283

1zgridPurpose Generate a z-plane grid of constant damping factors and natural frequencies

Syntax zgrid
zgrid(z,wn)

Description zgrid generates, for root locus and pole-zero maps, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to
in steps of , and plots the grid over the current axis. If the current axis
contains a discrete z-plane root locus diagram or pole-zero map, zgrid draws
the grid over the plot without altering the current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and normalized natural frequencies in the vectors
z and wn, respectively. If the current axis contains a discrete z-plane root locus
diagram or pole-zero map, zgrid(z,wn) draws the grid over the plot. The
frequency lines for unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([],[]) draws the unit circle.

Alternatively, you can select Grid from the right-click menu to generate the
same z-plane grid.

Example Plot z-plane grid lines on the root locus for the system

by typing

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

Transfer function:
2 z^2 - 3.4 z + 1.5

 z^2 - 1.6 z + 0.8

Sampling time: unspecified

π
π 10⁄

H z() 2z2 3.4z– 1.5+

z2 1.6z– 0.8+
---=

zgrid

1-284

To see the z-plane grid on the root locus plot, type

rlocus(H)
zgrid
axis('square')

See Also pzmap Plot pole-zero map of LTI systems
rlocus Plot root locus
sgrid Generate s-plane grid lines

zpk

1-285

1zpkPurpose Specify zero-pole-gain models or convert LTI model to zero-pole-gain form

Syntax sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)
sys = zpk(M)
sys = zpk(z,p,k,ltisys)

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)
sys = zpk(z,p,k,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = zpk('s')
sys = zpk('z')

zsys = zpk(sys)
zsys = zpk(sys,'inv') % for state-space sys only

Description zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS
models to zero-pole-gain form.

Creation of Zero-Pole-Gain Models

sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros
z, poles p, and gain(s) k. The output sys is a ZPK object storing the model data
(see “LTI Objects” on page 2-3).

In the SISO case, z and p are the vectors of real- or complex-valued zeros and
poles, and k is the real- or complex-valued scalar gain.

Set z or p to [] for systems without zeros or poles. These two vectors need not
have equal length and the model need not be proper (that is, have an excess of
poles).

You can also use rational expressions to create a ZPK model. To do so, use
either:

• s = zpk('s') to specify a ZPK model from a rational transfer function of the
Laplace variable, s.

h s() k s z 1()–() s z 2()–()... s z m()–()
s p 1()–() s p 2()–()... s p n()–()

--=

zpk

1-286

• z = zpk('z',Ts) to specify a ZPK model with sample time Ts from a rational
transfer function of the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as real- or complex-valued rational expressions in the variable s or z.

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of
each SISO entry of this model. In this case:

• z and p are cell arrays of vectors with as many rows as outputs and as many
columns as inputs, and k is a matrix with as many rows as outputs and as
many columns as inputs.

• The vectors z{i,j} and p{i,j} specify the zeros and poles of the transfer
function from input j to output i.

• k(i,j) specifies the (scalar) gain of the transfer function from input j to
output i.

See below for a MIMO example.

sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with
sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time
unspecified. The input arguments z, p, k are as in the continuous-time case.

sys = zpk(M) specifies a static gain M.

sys = zpk(z,p,k,ltisys) creates a zero-pole-gain model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

To create an array of ZPK models, use a for loop, or use multidimensional cell
arrays for z and p, and a multidimensional array for k.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the
input names or the input delay time. See set entry and the example below for
details. Note that

zpk

1-287

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for the following sequence of commands.

sys = zpk(z,p,k)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Zero-Pole-Gain Models as Rational Expressions in s or z
You can also use rational expressions to create a ZPK model. To do so, first type
either:

• s = zpk('s') to specify a ZPK model using a rational function in the Laplace
variable, s.

• z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a
rational function in the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Zero-Pole-Gain Form

zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form.
The output zsys is a ZPK object. By default, zpk uses zero to compute the zeros
when converting from state-space to zero-pole-gain. Alternatively,

zsys = zpk(sys,'inv')

uses inversion formulas for state-space models to compute the zeros. This
algorithm is faster but less accurate for high-order models with low gain at

.

Variable
Selection

As for transfer functions, you can specify which variable to use in the display
of zero-pole-gain models. Available choices include (default) and for
continuous-time models, and (default), , or for discrete-time
models. Reassign the 'Variable' property to override the defaults. Changing
the variable affects only the display of zero-pole-gain models.

Example Example 1
Specify the following zero-pole-gain model.

s 0=

s p
z z 1– q z 1–

=

zpk

1-288

To do this, type

z = {[] ; -0.5}
p = {0.3 ; [0.1+i 0.1-i]}
k = [1 ; 2]
H = zpk(z,p,k,-1) % unspecified sample time

Example 2
Convert the transfer function

h = tf([-10 20 0],[1 7 20 28 19 5])

Transfer function:
 -10 s^2 + 20 s
--
s^5 + 7 s^4 + 20 s^3 + 28 s^2 + 19 s + 5

to zero-pole-gain form by typing

zpk(h)

Zero/pole/gain:
 -10 s (s-2)

(s+1)^3 (s^2 + 4s + 5)

Example 3
Create a discrete-time ZPK model from a rational expression in the variable z,
by typing

z = zpk('z',0.1);
H = (z+.1)*(z+.2)/(z^2+.6*z+.09)

Zero/pole/gain:
(z+0.1) (z+0.2)

H z()

1
z 0.3–

2 z 0.5+()
z 0.1– j+() z 0.1– j–()

--
=

zpk

1-289

 (z+0.3)^2

Sampling time: 0.1

Algorithm zpk uses the MATLAB function roots to convert transfer functions and the
functions zero and pole to convert state-space models.

See Also frd Convert to frequency response data models
get Get properties of LTI models
set Set properties of LTI models
ss Convert to state-space models
tf Convert to TF transfer function models
zpkdata Retrieve zero-pole-gain data

zpkdata

1-290

1zpkdata Purpose Quick access to zero-pole-gain data

Syntax [z,p,k] = zpkdata(sys)
[z,p,k] = zpkdata(sys,'v')
[z,p,k,Ts,Td] = zpkdata(sys)

Description [z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero-
pole-gain model sys. The outputs z and p are cell arrays with the following
characteristics:

• z and p have as many rows as outputs and as many columns as inputs.

• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of zeros and
poles of the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns
as inputs such that k(i,j) is the gain of the transfer function from input j to
output i. If sys is a transfer function or state-space model, it is first converted
to zero-pole-gain form using zpk. See Table 11-15, “LTI Properties,” on page
11-194 for more information on the format of state-space model data.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather
than as cell arrays (see example below).

[z,p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts and the
input delay data Td. For continuous-time models, Td is a row vector with one
entry per input channel (Td(j) indicates by how many seconds the jth input is
delayed). For discrete-time models, Td is the empty matrix [] (see d2d for
delays in discrete systems).

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.inputname

Example Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)

zpkdata

1-291

Zero/pole/gain from input to output...
 1
 #1: -------
 (z-0.3)

 2 (z+0.5)
 #2: -------------------
 (z^2 - 0.2z + 1.01)

Sampling time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)

z =
 [0]
 [-0.5000]
p =
 [0.3000]
 [2x1 double]
k =
 1
 2

To access the zeros and poles of the second output channel of H, get the content
of the second cell in z and p by typing

z{2,1}

ans =
 -0.5000

p{2,1}

ans =
 0.1000+ 1.0000i
 0.1000- 1.0000i

See Also get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data

zpkdata

1-292

zpk Specify zero-pole-gain models

2

Block Reference

2 Block Reference

2-2

Introduction
The Control System Toolbox provides the LTI System block for use with
Simulink. Its reference page contains the following information:

• The block name and icon

• The purpose of the block

• A description of the block

• The block parameters and dialog box including a brief description of each
parameter

LTI System

2-3

2LTI SystemPurpose Import LTI System

Description The LTI System block imports linear, time-invariant (LTI) systems into
Simulink.

Dialog Box

LTI system variable
Enter your LTI model. This block supports state-space, zero/pole/gain, and
transfer function formats. Your model can be discrete- or continuous-time.

Initial states (state-space only)
If your model is in state-space format, you can specify the initial states in
vector format. The default is zero for all states.

LTI System

2-4

Index-1

Index

A
acker 1-13
algebraic loop 1-86
append 1-15
augstate 1-18

B
balancing realizations 1-19
balreal 1-19
block diagram

See model building
bode (Bode plots) 1-27
bodemag (Bode magnitude plots) 1-32

C
c2d 1-35
cancellation 1-171
canon 1-38
canonical realizations 1-38
care 1-40
cell array 1-102
chgunits 1-44
companion realizations 1-38
comparing models 1-27
concatenation, model

LTI arrays 1-265
connect 1-44, 1-46
connection

feedback 1-83
parallel 1-207
series 1-227

continuous-time 1-132
conversion to

See conversion, model
random model 1-225

controllability
matrix (ctrb) 1-54
staircase form 1-56

conversion, model
between model types 1-256
continuous to discrete (c2d) 1-35
discrete to continuous (d2c) 1-58

with negative real poles 1-59
resampling

discrete models 1-61
state-space, to 1-256

covar 1-51
covariance

output 1-51
state 1-51

crossover frequencies
allmargin 1-14
margin 1-168

ctrb 1-54
ctrbf 1-56

D
d2c 1-58
d2d 1-61
damp 1-62
damping 1-62
dare 1-64
dcgain 1-66
delay2z 1-67

Index

Index-2

delays
combining 1-281
conversion 1-67
delay2z 1-67
existence of, test for 1-106
hasdelay 1-106
I/O 1-231
input 1-231
output 1-232
Padé approximation 1-204
time 1-231

denominator
common denominator 1-272
property 1-233
specification 1-87

design
Kalman estimator 1-136
LQG 1-68
pole placement 1-209
state estimator 1-136

diagonal realizations 1-38
digital filter

specification 1-87
Dirac impulse 1-114
discrete-time models 1-132

equivalent continuous poles 1-62
frequency 1-30
Kalman estimator 1-136
random 1-72

discrete-time random models 1-72
discretization 1-35

available methods 1-35
dlqr 1-68
dlyap 1-70
drmodel 1-72

drss 1-72
dsort 1-74
DSP convention 1-87
dss 1-75
dssdata 1-77

E
esort 1-78
estim 1-80
estimator 1-136

current 1-138
discrete 1-136
discrete for continuous plant 1-140

evalfr 1-82

F
feedback 1-83
feedback 1-83

algebraic loop 1-86
negative 1-83
positive 1-83

filt 1-87
first-order hold (FOH) 1-35
frd 1-89
FRD (frequency response data) objects 1-89

data 1-92
frdata 1-92
frequencies

units, conversion 1-44
singular value plots 1-241

frdata 1-92
freqresp 1-94

Index

Index-3

frequency
crossover 1-168
for discrete systems 1-30
logarithmically spaced frequencies 1-27
natural 1-62
Nyquist 1-31

frequency response
at single frequency (evalfr) 1-82
Bode plot 1-27, 1-33
discrete-time frequency 1-30
freqresp 1-94
magnitude 1-27
MIMO 1-27
Nichols chart (ngrid) 1-180
Nichols plot 1-182
Nyquist plot 1-191
phase 1-27
plotting 1-27
singular value plot 1-241
viewing the gain and phase margins 1-168

G
gain

low frequency (DC) 1-66
state-feedback gain 1-68

gain margins 1-27
gensig 1-99
get 1-101
gram 1-104
gramian (gram) 1-20

H
Hamiltonian matrix and pencil 1-40
hasdelay 1-106

I
I/O

delays 1-231
dimensions 1-251

impulse 1-114
impulse response 1-114
inheritance 1-75
initial 1-120
initial condition 1-120
innovation 1-138
input

delays 1-231
Dirac impulse 1-114
names 1-232

See also InputName
number of inputs 1-251
pulse 1-99
sine wave 1-99
square wave 1-99

interconnection
See model building

inv 1-126
inversion 1-126

limitations 1-127
isct 1-132
isdt 1-132
isempty 1-133
isproper 1-134
issiso 1-135

Index

Index-4

K
kalman 1-136
Kalman estimator

current 1-138
discrete 1-136
innovation 1-138
steady-state 1-136

kalmd 1-140

L
LFT (linear-fractional transformation) 1-142
LQG (linear quadratic-gaussian) method

continuous LQ regulator 1-148
cost function 1-68
current regulator 1-145
discrete LQ regulator 1-68
Kalman state estimator 1-136
LQ-optimal gain 1-148
optimal state-feedback gain 1-148

lqr 1-148
lqrd 1-150
lqry 1-152
lsim 1-153
LTI arrays

building 1-265
concatenation 1-265
shape, changing 1-219
stack 1-265

LTI models
comparing multiple models 1-27
dimensions 1-179
discrete 1-132
discrete random 1-72
empty 1-133
frd 1-89

model order reduction 1-173
model order reduction (balanced realization)

1-20
ndims 1-179
norms 1-187
proper transfer function 1-134
random 1-225
second-order 1-202
SISO 1-135
ss 1-255
zpk 1-285

LTI properties
accessing property values (get) 1-101
admissible values 1-230
displaying properties 1-101
getting property names 1-101
getting property values 1-101
inheritance 1-75
property values

setting 1-229
setting property names 1-229

LTI System block 2-3
LTI Viewer 1-162
ltiview 1-162
lyap 1-165
Lyapunov equation 1-52, 1-105

continuous 1-165
discrete 1-70

M
margin 1-168
margins

gain and phase 1-27
matched pole-zero 1-35
MIMO 1-114
minreal 1-171

Index

Index-5

model building
appending LTI models 1-15
feedback connection 1-83
modeling block diagrams (connect) 1-46
parallel connection 1-207
series connection 1-227

model order reduction 1-173
balanced realization 1-20

modred 1-173

N
natural frequency 1-62
ndims 1-179
ngrid 1-180
Nichols

chart 1-180
plot (nichols) 1-182

nichols 1-182
noise

measurement 1-80
process 1-80
white 1-51

norm 1-187
norms of LTI systems (norm) 1-187
numerator

property 1-233
specification 1-87
value 1-102

Nyquist
frequency 1-31
plot (nyquist) 1-191

nyquist 1-191

O
observability

matrix (ctrb) 1-198
staircase form 1-200

obsv 1-198
obsvf 1-200
operations on LTI models

append 1-15
augmenting state with outputs 1-18
diagonal building 1-15
inversion 1-126
sorting the poles 1-74

ord2 1-202
output

covariance 1-51
delays 1-232
names 1-232

 See also OutputName
number of outputs 1-251

P
pade 1-204
Padé approximation (pade) 1-204
parallel 1-207
parallel connection 1-207
phase margins 1-27
place 1-209
plotting

multiple systems 1-27
Nichols chart (ngrid) 1-180
s-plane grid (sgrid) 1-239
z-plane grid (zgrid) 1-283

Index

Index-6

pole 1-211
pole placement 1-209
poles

computing 1-211
damping 1-62
equivalent continuous poles 1-62
multiple 1-211
natural frequency 1-62
pole-zero map 1-212
sorting by magnitude (dsort) 1-74
s-plane grid (sgrid) 1-239
z-plane grid (zgrid) 1-283

pole-zero
cancellation 1-171
map (pzmap) 1-212

proper transfer function 1-134
pulse 1-99
pzmap 1-212

R
random models 1-225
realizations 1-256

balanced 1-19
canonical 1-38
companion form 1-38
minimal 1-171
modal form 1-38
state coordinate transformation 1-260
state coordinate transformation (canonical)

1-39
reduced-order models 1-173

balanced realization 1-20
resampling (d2d) 1-61
reshape 1-219

Riccati equation
continuous (care) 1-40
discrete (dare) 1-64
for LQG design 1-138
Η∞-like 1-42

rlocus 1-220
rmodel 1-225
root locus

plot (rlocus) 1-220
rss 1-225

S
sample time

resampling 1-61
setting 1-231
unspecified 1-31

second-order model 1-202
series 1-227
series connection 1-227
set 1-229
simulation of linear systems. See time response
sine wave 1-99
singular value plot (bode) 1-241
SISO 1-135
SISO Design Tool 1-247
square wave 1-99
ss 1-255
stability margins

margin 1-168
pole 1-211
pzmap 1-212

stabilizable 1-42
stack 1-265

Index

Index-7

state
augmenting with outputs 1-18
covariance 1-51
discrete estimator 1-140
estimator 1-136
feedback 1-68
names 1-233
number of states 1-251
transformation 1-260
transformation (canonical) 1-39
uncontrollable 1-171
unobservable 1-171

state-space models
balancing 1-19
descriptor 1-75, 1-77
discrete random

discrete-time models 1-72
dss 1-75
initial condition response 1-120
quick data retrieval (dssdata) 1-77
random

continuous-time 1-225
realizations 1-256
specification 1-255
ss 1-255

step response 1-266
Sylvester equation 1-165
symplectic pencil 1-65

T
tf 1-271
time response

final time 1-114
impulse response (impulse) 1-114
initial condition response (initial) 1-120
MIMO 1-114
response to arbitrary inputs (lsim) 1-153
step response (step) 1-266
to white noise 1-51

transfer functions
common denominator 1-272
discrete-time 1-87
discrete-time random 1-72
DSP convention 1-87
filt 1-87
MIMO 1-271
quick data retrieval (tfdata) 1-278
random 1-225
specification 1-271
static gain 1-272
tf 1-271

transmission zeros
See zeros

triangle approximation 1-35
Tustin approximation 1-35

with frequency prewarping 1-35
tzero. See zero

Index

Index-8

Z
zero 1-282
zero-order hold (ZOH) 1-35
zero-pole-gain (ZPK) models

MIMO 1-286
quick data retrieval (zpkdata) 1-290
specification 1-285
static gain 1-286
zpk 1-285

zeros
computing 1-282
pole-zero map 1-212
transmission 1-282

zpk 1-285

	Function Reference
	Functions — Categorical List
	General
	Creating Linear Models
	Data Extraction
	Conversions
	System Interconnections
	System Gain and Dynamics
	Time Domain Analysis
	Frequency Domain Analysis
	Classical Design
	Pole Placement
	LQR/LQG Design
	State-Space Models
	Time Delays
	Model Dimensions and Characteristics
	Overloaded and Arithmetic Operators
	Matrix Equation Solvers
	Command-Line Plot Customization

	Functions — Alphabetical List

	Block Reference
	Introduction

	Index

